Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	ENSDF	31-May-2015				

 $Q(\beta^{-})=10500 \ 40$; $S(n)=2470 \ 40$; $S(p)=18580 \ 80$; $Q(\alpha)=-13660 \ 40$ 2012Wa38

 $Q(\beta^{-}n)=2120 \ 40, \ S(2n)=9990 \ 40, \ S(2p)=33900 \ 40 \ (2012Wa38).$

First isotope identification by 1971Ar32.

1971Ar32: ²³²Th(⁴⁰Ar,X)³⁵Si, E=290 MeV on the 310 cm heavy-ion cyclotron in Dubna. Measured fragments isotopic yields. Deduced evidence for fragments.

1986Du07, 1988DuZT: 9 Be(40 Ar,X) 35 Si, E=60 MeV/nucleon at GANIL. Measured $\beta\gamma$ -coin, T_{1/2}.

Additional information 1.

1999Ai02: Cross section measurement in Si(³⁵Si,X) E=38-80 MeV/ nucleon at the NSCL facility. Deduced strong absorption radius. 1997Fo01: ²⁰⁸Pb(³⁷Cl,X)³⁵Si, E=230 MeV at the Legnaro superconducting linear accelerator ALPI. Measured $\gamma\gamma$ -coin, yield.

1999YoZW: Fragmentation of ⁴⁸Ca beam at 70 MeV/nucleon by ⁹Be and ¹⁸¹Ta targets at RIKEN. Measured half-life and delayed-neutron branches.

2006Kh08: Secondary beams produced by fragmentation of ⁴⁸Ca beam at 60.3 MeV/nucleon by ¹⁸¹Ta targets at GANIL. Used a silicon telescope as both reaction target and detection system. Measured energy-integrated reaction cross-sections. Deduced radii, isospin dependence.

2006Ro34: ²H(⁴²S,X)³⁵Si at E=99.8 MeV/nucleon, at the NSCL facility. Measured production cross section.

2007No13: Fragmentation of ⁴⁰Ar beam at 100 MeV/nucleon on ⁹Be and ¹⁸¹Ta targets at GANIL. Measured momentum distribution and cross sections.

Mass measurements: 1986Fi06, 1986Sm05, 1984Ma49.

Structure calculations (binding energies, deformation, quadrupole moments, radii, levels, J^{π} , etc.): 2011Ka03, 2009No01, 2008Wi11, 2007Ch82.

This nuclide is of possible relevance to "island of inversion" near N=20.

³⁵Si Levels

Cross Reference (XREF) Flags

A	35 Al β^{-}	decay	(37.2 ms)	
---	------------------------	-------	-----------	--

- ¹H(³⁴Si,P):from IAR ²H(³⁴Si,pγ) ⁹Be(³⁶Si,³⁵Siγ) В
- С
- D

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0	(7/2)-	0.78 s <i>12</i>	ABCD	$%\beta^-=100; ~%\beta^-n<5 (1995ReZZ)$ μ=(-)1.638 4 (2007Ne14,2014StZZ) μ: using β-NMR on a polarized fragment beam (2007Ne14). J ^π : (d,p)=3 in ² H(³⁴ Si,pγ), 7/2 ⁻ from shell-model predictions, and systematic trends in Si isotopes.
				T _{1/2} : from β-decay measurement (1988DuZT). In an earlier paper by the same group (1986Du07) value given is 0.87 s 17. The evaluators adopt the more recent value. Mean square absorption radius=1.261 fm ² 35 from 2006Kh08 in Si(³⁵ Mg,X) reaction at E=33.79 and 38.79 MeV/nucleon, also measured energy-integrated cross sections, $\sigma_{\rm R}$ =2.53 b 8. Other: r_0^2 =1.26 fm ² 9, $\sigma_{\rm R}$ =2.46 b 18 at E=68.81 MeV/nucleon (1999Ai02). Configuration= $vf_{7/2}$.
909.95 23	(3/2)-	55 ps 14	ABCD	J^{π} : L(d,p)=1 in ² H(³⁴ Si,p\gamma), 3/2 ⁻ from shell-model predictions, and systematic trends in Si isotopes.
973.88 18	(3/2+)	5.9 ns 6	AB D	Configuration= $\nu p_{3/2}$. T _{1/2} : from the time spectrum of delayed coincidences in ³⁵ Al β^- decay (2001Nu01).

Adopted Levels, Gammas (continued)

³⁵Si Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1444?	$(1/2^+)$	В	E(level), J^{π} : corresponding to a possible IAR in ³⁵ P with L(p)=0 from R-Matrix analysis in ¹ H(³⁴ Si,p):From IAR (2012Im01).
1689 <i>3</i>	$1/2^{+}$	D	J^{π} : L(n)=0 in ⁹ Be(³⁶ Si, ³⁵ Si γ).
1970 6		D	
2044 5	$(1/2)^{-}$	CD	J^{π} : L(d,p)=1 in ² H(³⁴ Si,p γ), 1/2 ⁻ from shell-model predictions. Configuration= $\nu p_{1/2}$.
2168.2 4	5/2+	AB D	J^{π} : corresponding to an IAR in ³⁵ P with L(p)=2 and J=5/2 ⁺ from R-Matrix analysis in ¹ H(³⁴ Si,p):From IAR (2012Im01).
2194?	(1/2 ⁻ ,3/2 ⁻)	В	E(level), J^{π} : corresponding to a possible IAR in ³⁵ P with L(p)=1 from R-Matrix analysis in ¹ H(³⁴ Si,p):From IAR (2012Im01).
2275 6		D	
2377 7		D	
3140		Α	
3450		Α	
3611? 8		D	
3770		Α	
5190		Α	
≈5500	(5/2)-	C	J^{π} : L(d,p)=3 in ² H(³⁴ Si,p γ). Configuration= $\nu f_{5/2}$.
5760		Α	0 3/2
6330		Α	
7360		Α	
7690		Α	

[†] From a least-squares fit to γ -ray energies if applicable. Values without uncertainties are from ³⁵Al β^- decay, unless otherwise noted.

 $\gamma(^{35}\text{Si})$

[‡] From shell mode predictions and systematic trends on Si isotopes.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α #	Comments
909.95	$(3/2)^{-}$	910.11 30	100	0	$(7/2)^{-}$			
973.88	$(3/2^+)$	64.1 <i>3</i>	100	909.95	(3/2)-	[E1]	0.0368 8	B(E1)(W.u.)=0.00036 4 α (K)=0.0342 7; α (L)=0.00244 5; α (M)=0.000158 4
		973.78 20	11.8 24	0	$(7/2)^{-}$	[M2]		B(M2)(W.u.)=0.059 14
1689	$1/2^{+}$	715 [‡] 4	14.6 [‡] 15	973.88	$(3/2^+)$			
		780 [‡] 4	100 [‡] 8	909.95	$(3/2)^{-}$			
1970		1970 [‡] 6	100	0	$(7/2)^{-}$			
2044	$(1/2)^{-}$	1134 [‡] 5	100	909.95	$(3/2)^{-}$			
2168.2	$5/2^{+}$	1194.2 4	35 8	973.88	$(3/2^+)$			
		2168.2 6	100 20	0	$(7/2)^{-}$			
2275		2275 [‡] 6	100	0	$(7/2)^{-}$			
2377		2377 [‡] 7	100	0	$(7/2)^{-}$			
3611?		3611 [‡] 8	100	0	$(7/2)^{-}$			

[†] From ³⁵Al β⁻ decay, unless otherwise noted.
[‡] From ⁹Be(³⁶Si,³⁵Siγ).
[#] From BrIcc v2.3a (10-Sep-2014) 2008Ki07, "Frozen Orbitals" appr.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{35}_{14}{
m Si}_{21}$