²H(³⁴Si,pγ) 2014Bu01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	ENSDF	31-May-2015

(d,p) transfer reaction in inverse kinematics.

2014Bu01: E=20.5 MeV/nucleon ³⁴Si beam was produced by fragmentation of a 55 MeV/nucleon ³⁶S¹⁶⁺ primary beam on a 1075 μ m-thick Be target. The fragments were separated, and selected using the LISE3 spectrometer at GANIL, with an intensity of 1.1 ×10⁵ pps and a purity of 95% for ³⁴Si beam. Target was a 2.6 mg/cm² *1* Cd₂. Heavy products were detected and identified with two position-sensitive multiwire proportional chambers (FWHM=1 mm) placed 0.92 m and 0.52 m upstream of target, an ionization chamber placed 40cm downstream of target and a 1.5cm-thick plastic scintillator located behind the IC for energy loss, tof measurements, and beam monitoring; Protons were detected with four modules of the MUST2 array placed 10 cm from the target covering polar angles ranging from 105° to 150° with respect to the beam direction and a 16 Si strip annular detector at a distance of 11.3 cm to cover polar angles from 156° to 168°; γ rays were detected with four segmented Ge detectors from the EXOGAM array perpendicular to the beam axis at a mean distance of 5 cm, and 9 cm downstream from the target with efficiency ε = 3.8 % 2 at 1 MeV. Measured σ (Ep, θ), E γ , I γ , (³⁴Si)p-coin. Deduced levels, J, π , 1-transfer, spectroscopic factors from ADWA analysis. Comparison with shell-model calculations.

³⁵Si Levels

E(level) [†]	$J^{\pi \ddagger}$	L#	S#	Comments
0	$7/2^{-}$	3	0.56 6	Configuration= $f_{7/2}$ orbital.
910 <i>3</i>	3/2-	1	0.69 10	E(level): from γ -ray peak at 910 keV. 906 keV 32 from proton spectrum.
				Configuration= $p_{3/2}$ orbital.
2044 7	$1/2^{-}$	1	0.73 10	E(level): from $1033\gamma+910\gamma$. 2060 50 from proton spectrum (2014Bu01).
				J^{π} : large spectroscopic factor discards $3/2^{-}$ component.
				Configuration= $p_{1/2}$ orbital.
≈5500	$5/2^{-}$	3	0.32 3	Additional information 1.
				Configuration= $f_{5/2}$ orbital.

[†] From 2014Bu01. A tentative structure at 3.33 MeV 12 probably corresponds to the elastic deuteron break-up process.

[‡] As given in 2014Bu01 based on L-transfers and shell-model predictions.

[#] From ADWA fits to measured proton angular distributions (2014Bu01). Additional uncertainty of $\approx 15\%$ in spectroscopic factors due to global potential in the ADWA calculation is not included.

$\gamma(^{35}\text{Si})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
910 <i>3</i>	82 10	910	3/2-	0	7/2-	I_{γ} : this values agrees with 72 <i>11</i> expected from 1894 <i>185</i> number of protons in a peak at 906 keV <i>32</i> .
1134 6		2044	$1/2^{-}$	910	$3/2^{-}$	1

[†] From 2014Bu01.

²H(³⁴Si,pγ) 2014Bu01

Level Scheme

Intensities: Relative I_{γ}

 $^{35}_{14}{
m Si}_{21}$