¹H(³⁴Si,P):from IAR **2012Im01**

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen and Balraj Singh ENSDF 31-May-2015

From isobaric analog resonances in ³⁵P using (p,p) elastic scattering in inverse kinematics.

2012Im01: $E\approx 5$ MeV 34 Si beam was produced by projectile fragmentation of a 63 MeV/nucleon 40 Ar primary beam and was separated by the RIKEN projectile fragment separator (RIPS). Fragments were identified event-by-event by time-of-flight between the timing timing signals measured by a plastic scintillator and the cyclotron rf signals. The secondary target was a 10.95 mg/cm² thick polyethylene film. Scattered protons were detected and identified with ΔE -E telescopes (FWHM=130 keV) of three layers of silicon semiconductor detectors (SSDs) (the first one is double-sided strip detector for ΔE and the other two one-sided for E). Measured $\sigma(Ep,\theta)$. Deduced levels, resonance energies, L-transfer, proton widths, total widths, and spectroscopic factors from R-matrix analysis for isobaric analog resonances (IARs) in 35 P.

IARs observed by 2012Im01 in 35 P are related to the corresponding β^- -decay parent states in 35 Si.

³⁵Si Levels

Additional information 1.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	7/2-	E(level): IAR resonance energy in ³⁵ P: E _R (c.m.)=3006 2, corresponding to IAR state in ³⁵ P at 15196 14 (2012Im01).
910	3/2-	E(level): 984 36 from IAR resonance energy in 35 P: $E_R(c.m.)=3990$ 36, corresponding to IAR state in 35 P at 16180 39 (2012Im01).
974	3/2+	E(level): 803 18 from IAR resonance energy in 35 P: $E_R(c.m.)=3809$ 18, corresponding to IAR state in 35 P at 15999 23 (2012Im01).
1444?	$(1/2^+)$	E(level): rounded value of 1444 44 from IAR resonance energy in ³⁵ P: E _R (c.m.)=4450 44, corresponding to possible IAR state in ³⁵ P at 16640 46 (2012Im01).
2168	5/2+	E(level): 2093 12 from IAR resonance energy in 35 P: $E_R(c.m.)=5099$ 12, corresponding to IAR state in 35 P at 17289 18 (2012Im01).
2194?	$(1/2^-, 3/2^-)$	E(level): rounded value of 2194 15 from IAR resonance energy in ³⁵ P: E _R (c.m.)=5200 15, corresponding to possible IAR state in ³⁵ P at 17390 21 (2012Im01).

 $^{^{\}dagger}$ Rounded values from Adopted Levels, unless otherwise noted. Values deduced from difference of measured IAR resonance energy $E_R(c.m.)$ for ^{35}P in 2012Im01 are given as comments, with $E_R(c.m.)$ =3006 2 identified as IAR of ground state of ^{35}Si .

[‡] From R-Matrix fit to measured cross-sections for isobaric analog resonances in ³⁵P (2012Im01).