35 Si β^- decay (0.78 s) 1988DuZS,1986Du07,1988DuZT

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen, John Cameron and Balraj Singh	NDS 112,2715 (2011)	20-Oct-2011			

Parent: ³⁵Si: E=0; $J^{\pi}=(7/2^{-})$; $T_{1/2}=0.78$ s *12*; $Q(\beta^{-})=10500$ *40*; $\%\beta^{-}$ decay=100.0

³⁵Si-J^{π},T_{1/2}: From Adopted Levels of ³⁵Si.

³⁵Si-Q(β⁻): From 2011AuZZ, 2003Au03.

1988DuZS, 1986Du07, 1988DuZT: ³⁵Si produced by fragmentation of ⁴⁰Ar beam of $2x10^{11}$ particles/s at 60 MeV/nucleon on a 190 mg/cm² Be target at GANIL. Decay observed with a 1 mm thick plastic scintillator and a 174 cm³ intrinsic Ge detector (1.2% absolute efficiency at 1.33 MeV). Measured $\beta\gamma(t)$, E γ , E γ . Deduced levels, J^{π} , T_{1/2}.

Additional information 1.

2007Ne14: measured ground state g-factor using the β -NMR method.

³⁵P Levels

With three γ -rays unplaced, large Q-Value of 10.5 MeV, there could additional transitions to levels up to 5.6 MeV and the level scheme could be incomplete.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡
0	$1/2^{+}$	47.3 s 8
2386.5 5	$3/2^{+}$	
3859.8 6	$5/2^{+}$	
4101.1 6	$(7/2^{-})$	
4381.3? 8		
4493.4 6	$(7/2^{-})$	
4869.4 9		
4962.3? 7		
5560.7 7		

[†] From least-squares fit to $E\gamma$'s.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(4.94 \times 10^3 \ 4)$	5560.7	<12.4	>4.6	av $E\beta$ =2249 20 Additional information 2.
$(5.63 \times 10^3 \ 4)$	4869.4	<10.8	>4.9	av E β =2588 20 Additional information 3.
$(6.01 \times 10^3 \ 4)$	4493.4	<21.4	>4.8	av E β =2773 20 Additional information 4.
$(6.12 \times 10^3 \ 4)$	4381.3?	<9.4	>5.2	av $E\beta$ =2828 20 Additional information 5.
$(6.40 \times 10^3 \ 4)$	4101.1	<46	>4.6	av $E\beta$ =2966 20 Additional information 6.
$(6.64 \times 10^3 \ 4)$	3859.8	<2	>6.0	av Eβ=3084 20

[†] From 1988DuZS, except that these are given here as upper limits only, since the decay scheme is considered as incomplete in view of large Q value and the possibility of missing transitions from higher levels.

[‡] Absolute intensity per 100 decays.

35 Si β^{-} decay (0.78 s)	988DuZS,1986Du07,1988DuZT (continued)
---------------------------------------	---------------------------------------

 $\gamma(^{35}P)$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
241.4 3	100 4	4101.1	$(7/2^{-})$	3859.8	5/2+
392.3 <i>3</i>	58 <i>3</i>	4493.4	$(7/2^{-})$	4101.1	$(7/2^{-})$
468.9 ^{‡&} 4	18.7 25	4962.3?		4493.4	$(7/2^{-})$
633.7 5	22 3	4493.4	$(7/2^{-})$	3859.8	$5/2^{+}$
768.0 4	16 <i>3</i>	4869.4		4101.1	$(7/2^{-})$
1009.9 5	24 5	4869.4		3859.8	$5/2^{+}$
1459.7 <i>5</i>	12 4	5560.7		4101.1	$(7/2^{-})$
1473.4 5	17 4	3859.8	$5/2^{+}$	2386.5	3/2+
1714.7 6	22 5	4101.1	$(7/2^{-})$	2386.5	$3/2^{+}$
1994.8 ^{#&} 6	36 6	4381.3?		2386.5	$3/2^{+}$
2386.4 6	117 7	2386.5	$3/2^{+}$	0	$1/2^{+}$
3173.5 10	35 6	5560.7		2386.5	$3/2^{+}$
x3349.1 10	46 6				
^x 3590.0 11	60 7				
3859.5 10	121 8	3859.8	$5/2^{+}$	0	$1/2^{+}$
4100.8 10	135 8	4101.1	$(7/2^{-})$	0	$1/2^{+}$

[†] From 1986Du07, unless otherwise noted.

[‡] Unplaced γ ray in 1986Du07 and 1988DuZS. The placement is from γ ray of the same energies observed in 2008Wi09 in 208 Pb(36 S,X γ).

[#] Placement from 1988DuZS. In 1988DuZT, this γ was placed from a 6095.8 (there is a legibility problem in this report as the level may be read as 6035.8, as seems to have been done in 1990En08 evaluation). However, in view of in-beam results from 2008Wi09, 1994.8 γ most likely deexcites a 4381 level, not a 6095 level.

[@] For absolute intensity per 100 decays, multiply by 0.27 1.

& Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

35 Si β^- decay (0.78 s) 1988DuZS,1986Du07,1988DuZT

Decay Scheme

 $^{35}_{15}P_{20}$