Adopted Levels, Gammas

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh and Jun Chen	ENSDF	15-Dec-2017							

 $Q(\beta^{-})=22590 \text{ syst}; S(n)=1520 \text{ syst}; S(p)=21900 \text{ syst}; Q(\alpha)=-20340 \text{ syst}$ 2017Wa10

Estimated uncertainties: $\Delta Q(\beta^{-})=720$, $\Delta S(n)=300$, $\Delta S(p)=840$, $\Delta Q(\alpha)=870$ (2017Wa10).

 $Q(\beta^{-}n)=21840\ 670,\ S(2n)=1690\ 810\ (syst,2017Wa10).\ S(2p)=50400\ (theory,\ 1997Mo25).$ From mass values in 2017Wa10, evaluators deduce $Q(\beta^{-}2n)=17120\ 770,\ Q(\beta^{-}3n)=14845\ 770,\ Q(\beta^{-}4n)=9070\ 770,\ Q(\beta^{-}5n)=6760\ 770.$

1983La12 (also 1984La03): ³⁵Na produced and identified in Ir(p,X) reaction at 10 GeV in the CERN-ISOLDE facility. A $4\pi i$ -geometry liquid scintillator (4 l useful volume) associated with a thin plastic detector of the same geometry for detecting neutrons. Measured β n-coincidence and T_{1/2}. Deduced evidence for ³⁵Na.

2002LuZT: measured yield of ³⁵Na in Ta(⁴⁸Ca,X) E=59.8 MeV/nucleon fragmentation reaction.

2013StZY: ³⁵Na activity was produced in ⁹Be(⁴⁸Ca,X) at E(⁴⁸Ca)=345 MeV/nucleon from the RIBF-RIKEN facility. Fragments were separated using BigRIPS and ZeroDegree spectrometers on the basis of $B\rho$ - ΔE - $B\rho$ and TOF measurements with position-sensitive detectors. Separated ions of ³⁵Na were implanted into CAITEN segmented detector for recoils and β detection. The γ radiation was measured by DALI2 array of NaI(TI) detectors and three Ge clover detectors. Measured half-life of the decay of ³⁵Na

Nuclear structure theory calculations for binding energies, deformation, quadrupole moments, radii, levels, J^{π} , mass, $T_{1/2}$, etc.: 13 references extracted from the NSR database are listed as document records in the ENSDF dataset.

This nuclide is of possible relevance to "island of inversion" near N=20.

Additional information 1.

 β^- or delayed-neutron decaying precursor nuclides ³⁵Ne, ³⁶Ne or ³⁷Ne have not been experimentally identified.

³⁵Na Levels

Cross Reference (XREF) Flags

A
$$C(^{36}Mg,^{35}Na\gamma)$$

E(level)	J^{π}	T _{1/2}	XREF	Comments
0 [‡]	(3/2+)	1.8 ms 5	A	 %β⁻=100; %β⁻n>0; %β⁻2n=?; %β⁻3n=?; %β⁻4n=? %β⁻5n=? The β⁻n decay mode was observed by 1983La12, but %β⁻n was not deduced. According to the theoretical calculations (2003Mo09 and 2016Ma12), almost 100% decay is through delayed-neutron branches. In β-delayed γ-ray spectrum, 2013StZY observed one γ ray at 661 keV from the decay of ³⁵Na, which was proposed either a transition from the first 2⁺ in ³⁴Mg or from an excited state in ³⁵Mg. Based on theoretical predictions of strong delayed-neutron branches, this γ ray most likely is from the first 2⁺ state in ³⁴Mg. Theoretical T_{1/2}=7.9 ms, %β⁻n=16.9, %β⁻2n=74.8, %β⁻3n=3.9, %β⁻4n=3.3, %β⁻5n=0.5 (2016Ma12). Theoretical T_{1/2}=2.8 ms, %β⁻n=56.9, %β⁻2n=18.9, %β⁻3n=24.2 (2003Mo09). J^π: 3/2⁺ also from systematics of odd-A Na nuclides (2017Au03), and from theory (1997Mo25). T_{1/2}: from 2015Bi05 evaluation, where weighted average is taken of the two measured values: 2.4 ms 7 (2013StZY, (implant)β correlated curve by including in the analysis the β, β-n and β-2n daughter and grand-daughter activities, statistical and systematic uncertainties included); 1.5 ms 5 (1983La12,1984La03, decay curve for delayed neutrons).
1014 [‡] 17	$(3/2^{+})$ $(7/2^{+})$		A	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

³⁵Na Levels (continued)

[†] From Monte-Carlo shell-Model calculations using the SPDF-M effective interaction (2014Do05). [‡] Band(A): $K^{\pi} = (3/2^+)$ band. Rotational band predicted by shell model calculations (2014Do05).

$\gamma(^{35}\text{Na})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$
373	$(5/2^+)$	373 5	0	$(3/2^+)$
1014	$(7/2^+)$	641 <i>16</i>	373	$(5/2^+)$

[†] From C(36 Mg, 35 Na γ).

Adopted Levels, Gammas

Level Scheme

³⁵₁₁Na₂₄

Adopted Levels, Gammas

 $^{35}_{11}Na_{24}$