Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	ENSDF	15-Dec-2017

 $Q(\beta^{-})=1586\times10^{1} 27$; $S(n)=75\times10^{1} 27$; $S(p)=2333\times10^{1} 66$; $Q(\alpha)=-1797\times10^{1} 38$ 2017Wa10

 $Q(\beta^{-}n)=10570\ 270,\ S(2n)=5470\ 270,\ S(2p)=44940\ 650\ (syst)\ (2017Wa10).$ Evaluators deduce $Q(\beta^{-}2n)=7995\ 270,\ Q(\beta^{-}3n)=2525\ 270\ from\ mass\ values\ in\ 2017Wa10.$

1989Gu03, 1991Or01: first identification of ³⁵Mg nuclide in ¹⁸¹Ta(⁴⁸Ca,X) reaction at 55 MeV/nucleon at the French National Facility GANIL.

1995ReZZ: Nuclei of interest produced by ²³²Th(p,X) at 800 MeV in the Time-of-flight spectrometer at the LAMPF accelerator. Measured half-life, delayed neutron-emission probability.

1999YoZW: Fragmentation of ⁴⁸Ca beam at 70 MeV/nucleon by ⁹Be and ¹⁸¹Ta targets at RIKEN. Measured half-life and delayed-neutron branches.

2006Kh08: Secondary beams produced by fragmentation of ⁴⁸Ca beam at 60.3 MeV/nucleon by ¹⁸¹Ta targets at GANIL. Used a silicon telescope as both reaction target and detection system. Measured energy-integrated reaction cross-sections. Deduced radii, isospin dependence.

2007Ts09: Fragmentation of ⁴⁸Ca beam at 64 MeV/nucleon by ⁹Be and at 140 MeV/nucleon by ¹⁸¹Ta targets at the National Superconducting Cyclotron Laboratory (NSCL), analyzed cross sections and binding energies.

2011Ka01: E=900 MeV/nucleon secondary ³⁵Mg beam from Be(⁴⁸Ca,X) primary reaction. Target=CH₂. Fragment separator at GSI facility. Measured interaction cross sections by detecting unreacted Mg particles by B ρ - Δ E-tof method. Deduced matter radius by Glauber model analysis. Comparison with HF and RMF predictions.

Additional information 1.

2012Kw02: ⁹Be,Ni,¹⁸¹Ta(⁴⁰Ar,X),E=140 MeV/nucleon, measured fission fragment spectra by energy loss from time-of-flight measurements, average isobaric velocities, parallel momentum transfers, widths, fragment s. Comparison with empirical formula EPAX, and predictions from internuclear cascade and deep inelastic models using Monte Carlo ISABEL-GEMINI and DIT-GEMINI computer codes.

2013StZY: ³⁵Mg activity was produced in ⁹Be(⁴⁸Ca,X) at E(⁴⁸Ca)=345 MeV/nucleon from the RIBF-RIKEN facility. Fragments were separated using BigRIPS and ZeroDegree spectrometers on the basis of B ρ - Δ E-B ρ and TOF measurements with position-sensitive detectors. Separated ions of ³⁵Mg were implanted into CAITEN segmented detector for recoils and β detection. The γ radiation was measured by DALI2 array of NaI(Tl) detectors and three Ge clover detectors. Measured half-life of the decay of ³⁵Mg.

Mass measurements: 2007Ju03, 2001Sa72, 2000Sa21, 1991Or01.

Nuclear structure theory calculations for binding energies, deformation, quadrupole moments, radii, levels, J^{π} , mass, $T_{1/2}$, etc.: 18 references extracted from the NSR database are listed as document records in the ENSDF dataset.

The ³⁶Na isotope is expected to decay by neutron emission to to ³⁵Mg, but particle instability of ³⁶Na is proposed only from its non-observation.

This nuclide is of possible relevance to "island of inversion" near N=20. The level scheme from $2011C_{0.15}$ is tentative

The level scheme from 2011Ga15 is tentative.

³⁵Mg Levels

Cross Reference (XREF) Flags

- A 35 Na β^- decay (1.8 ms)
- **B** ${}^{9}\text{Be}({}^{38}\text{Si},{}^{35}\text{Mg}\gamma)$
- C $C(^{36}Mg,^{35}Mg\gamma),(^{37}Al,^{35}Mg\gamma)$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	995ReZZ. Ia12). 3Mo09).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

³⁵Mg Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
			$T_{1/2}$: from (implant) β -correlated decay curve (2013StZY). Other: 72 ms 43 from 2008ReZZ and 1995ReZZ.
			J^{π} : $3/2^{-}$ proposed by 2017Mo26 from shell-Model calculations with the SDPF-M interaction, and the SDPF-M interaction including the p _{1/2} orbit; a closely spaced $3/2^{-}$ and $5/2^{-}$ doublet predicted by 2011Ga15 with $5/2^{-}$ g.s. from Monte-Carlo shell-model calculations using the SDPF-M effective interaction, and $3/2^{-}$ g.s. for shell-model calculations using the SDPF-U interaction. 2017Mo26 also predict $3/2^{+}$ from shell-model calculations in the antisymmetrized molecular dynamics (AMD) framework with the Gogny D1S force. Others: $7/2^{-}$ from systematics (2017Au03), $3/2^{-}$ from theory (1997Mo25).
			Mean square absorption radius=1.64 fm ² 15 from 2006Kh08 in Si(35 Mg,X) reaction at E=33.79 and 38.79 MeV/nucleon, also measured energy-integrated cross sections, σ_R =3.9 b 8. The rms matter radius=3.40 fm 24 (2011Ka01).
0+x		BC	E(level): this level is either the g.s. or at an energy <200 keV, the detection threshold in the experiment by 2017Mo26. It could also be a 30-keV state, 3/2 ⁻ predicted in shell-model calculations by 2011Ga15. Shell-model calculations by 2017Mo26 predict either a 5/2 ⁻ level or a 1/2 ⁻ level below 200 keV excitation, depending on the interaction used.
0+y?		С	E(level): 2017Mo26 suggest a level at an energy of <200 keV from analysis of measured parallel momentum distributions.
206+x 8		С	J^{π} : not $1/2^{-}$ from shell-model calculations (2017Mo26).
445+x 5	$(3/2^+, 5/2^+)^{\ddagger}$	BC	
619+x 7	$(1/2^-, 3/2^-)^{\ddagger}$	BC	
670+x 8		BC	

[†] From E γ values. [‡] From measured parallel-momentum distribution and deduced L-transfer (2017Mo26).

 $\gamma(^{35}Mg)$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	Comments
206+x		206 8	100	0+x	New γ observed by 2017Mo26.
445+x	$(3/2^+, 5/2^+)$	445 5	100	0+x	E_{γ} : weighted average of 443 7 (2017Mo26) and 446 5 (2011Ga15).
619+x	$(1/2^{-}, 3/2^{-})$	619 7	100	0+x	E_{γ} : weighted average of 616 8 (2017Mo26) and 621 7 (2011Ga15).
670+x		670 8	100	0+x	E_{γ} : from 2011Ga15. This γ is not resolved from the 616-keV in 2017Mo26, but its presence is indicated in the spectra.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{35}_{12}Mg_{23}$