³⁵Ca ε decay (25.7 ms) 1999Tr04

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen, John Cameron and Balraj Singh	NDS 112,2715 (2011)	20-Oct-2011			

Parent: ³⁵Ca: E=0; $J^{\pi}=(1/2^+)$; $T_{1/2}=25.7$ ms 2; $Q(\varepsilon)=15961$ SY; $\%\varepsilon+\%\beta^+$ decay=100.0

 35 Ca-J^{π},T_{1/2}: From 35 Ca Adopted Levels.

³⁵Ca-Q(*ε*): 15961 196 (syst,2011AuZZ). Other: 15770 200 (syst,2003Au03).

Populated levels decay by delayed-p or delayed-2p emission.

1999Tr04, 1998Le45: ³⁵Ca (98% purity, 0.3 ions/s) beam produced by fragmentation of a 95 MeV/nucleon ⁴⁰Ca²⁰⁺ beam of 400 enA on a rotating 500 μ m natural Ni target at GANIL, and implanted into a 500 μ m silicon detector for detecting β p and β 2p decays. Two silicon counters for detecting β -rays and three Ge detectors and two NaI detectors for detecting γ -rays. Measured β p γ -coin, Ep, Ip, T_{1/2}. Deduced levels.

Other: 1985Ay01.

³⁵K Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0	$(3/2)^+$	178 ms 8	$T_{1/2}$: from 1998Sc19, extracted from decay curve.
1553 5			Additional information 1.
3783 26			Additional information 2.
4020 37			Additional information 3.
4523 [‡]			
4790 <i>49</i>			Additional information 4.
4983 <i>13</i>			Additional information 5.
5251 <i>73</i>			Additional information 6.
5495 [‡]			
5536 49			Additional information 7.
5713 <i>4</i> 9			Additional information 8.
5718 [‡]			
5867 <i>38</i>			Additional information 9.
6092 62			Additional information 10.
6301 [‡]			
6336 <i>73</i>			Additional information 11.
7816 [‡]			
9169 23			Additional information 12.

[†] From $E_{c.m.}$ +S(p) where S(p)=84.49 *61* from 2011AuZZ and $E_{c.m.}$ deduced from $E_p(lab)$ for transitions to the ground state of ³⁵Ar (p0 mode), similar for p1, p2 and p3 modes.

[‡] Pseudo level deduced by the evaluator from the energy range in the table of additional unresolved feeding.

[#] From Adopted Levels. For excited states $J^{\pi'}$ s are not given but from allowed log *ft* values these will be restricted to $1/2^+, 3/2^+$ if parent $J^{\pi}=1/2^+$ for ³⁵Ca.

 ε, β^+ radiations

TI\$	Range		Fee	eding(%)	Decay	mode
414	1-4901	5.4	9	p0		
5210	0-5779	2.2	3	p1		
533	8-6097	1.0	4	p2		
592	1-6681	2.0	7	р3		
624	5-6931	1.0	9 17	p0		
742	7-8205	1.1	2	p0		

				³⁵ Ca ε decay (25.7 ms)		1999Tr04 (continued)		
				ε, β^+ radiations (continued)				
E(decay)	E(level)	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	E(decay)	E(level)	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	
(6792 SY)	9169	3.2	8.4 4	(10466 SY)	5495		2.2 [†] 3	
(8145 SY)	7816		1.1 [†] 2	(10710 SY)	5251	4.6	3.9 <i>3</i>	
(9625 SY)	6336	4.5	2.9 3	(10978 SY)	4983	4.2	10.2 7	
(9660 SY)	6301		2.0 [†] 7	(11171 <i>SY</i>)	4790	4.8	2.9 3	
(9869 SY)	6092	4.8	1.40 19	(11438 SY)	4523		5.4 [†] 9	
(10094 SY)	5867	4.9	1.43 17	(11941 SY)	4020	4.9	3.8 <i>3</i>	
(10243 SY)	5718		1.0 [†] 4	(12178 SY)	3783	5.0	3.0 3	
(10248 SY)	5713	5.3	0.61 15	(14408 SY)	1553	4.2	48.5 13	
(10425 SY)	5536	5.3	0.72 18					

[†] Additional unresolved feeding was observed to the following energy regions. No log *ft* values are deduced for these feedings and pseudo levels.

[‡] Absolute intensity per 100 decays.