³⁴S(**p**,**p**),(**p**,**p**'γ):resonances **1967Ko19,1977Ou01,1981Bi05**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, John Cameron and Balraj Singh	NDS 112,2715 (2011)	20-Oct-2011

1967Ko19: ³⁴S(p,p' γ), E=2.78-3.08 MeV proton beam produced from the 4 MeV electrostatic accelerator of the Physical-Technical Institute of the Ukrainian SSR Academy of Sciences, in energy step of 1 keV. Enriched thin ³⁴S target. A 70 by 60 mm NaI(TI) crystal for detecting the 2.13 MeV γ -ray of ³⁴S decay, resolution of 11.5% for the 0.622 MeV ¹³⁷Cs line. Measured $\sigma(E_p,\theta)$ from yields of the 2.13 MeV γ -ray, p $\gamma(\theta)$ of the 2.13 MeV γ -ray. Deduced resonance energies, J^{π} , relative resonance intensities.

1977Ou01: ³⁴S(p,p), E=1.45-2.82 MeV proton beam of 3-5 μA produced from the TUNL 3-MV Van de Graaff accelerator in energy steps of 100 eV for on-resonance and 400 eV for off-resonance, overall FWHM=350-450 eV. CdS target (enriched 90% ³⁴S) evaporated onto 5-10 μg/cm² carbon backings. Surface barrier detectors for protons at 90°, 105°, 135° and 160°. Measured σ(E_p,θ). Deduced resonance energies, J^π, Γ_p from R-Matrix analysis.

1981Bi05: ³⁴S(p,p), E=1.4-2.8 MeV 50-80 nA proton beam produced from the Groningen 5 MV Van de Graaff accelerator. Targets of 4 and 1 μ g/cm² Sb₂S₃ (90% in ³⁴S) evaporated onto 10 μ g/cm² carbon backings. Three silicon surface barrier detectors for detecting protons at 88°, 124° and 174°. Measured σ (E_p, θ). Deduced resonance energies, J^{π} , Γ_{p} . Also measured (p, γ).

1971BrXT: ³⁴S(p,p). Measured $\sigma(E_p)$. Deduced resonance energies, J^{π} , widths.

1974Bi16: ³⁴S(p,p), E=1.2-2.1 MeV protons produced from the Helsinki University 2.5 MV van de Graaff accelerator. Targets prepared from natural sulphur (4.22% ³⁴S) with ³⁴S ions embedded into carbon foils. Four silicon surface barrier detectors for detecting protons. Measured $\sigma(E_{p},\theta)$. Deduced resonance energies, J^{π} , widths from analysis of the resonances.

Others: 1978Ce02, 1980Fa07, 1983Ch50, 1988Za04.

³⁵Cl Levels

A₂ and A₄ from $p\gamma(\theta)$ of the 2.13 MeV γ -ray from ³⁴S (1967Ko19). R.I.: resonance intensity relative to 1 for E_p=2799 resonance (1967Ko19).

E(level) ^{†‡}	J ^{πa}	Γ_p [‡]	E _p (lab)(keV) [‡]	Comments
7195 [#]	1/2-#		848	Γ =27 eV 8 (1971BrXT).
7274 [#]	1/2 ^{-#}		929	$\Gamma = 14 \text{ eV } 4 \text{ (1971BrXT)}.$
7550 [@]	7/2-@	0.0072 [@] keV 15	1214	Γ =11.0 eV 15, Γ_{γ} =3.8 eV 15 (1974Bi16).
7686 <mark>&</mark>	3/2 ^{-&}		1354	446 eV 15 for $J^{\pi} = 3/2^{-}$ (1981Bi05).
7706 <mark>&</mark>	3/2 ⁺ ,5/2 ⁺ &		1375	$\Gamma_{\rm p}=4 \text{ eV } 1 \text{ for } J^{\pi}=5/2^+, 17 \text{ eV } 3 \text{ for } J^{\pi}=3/2^+ (1981\text{Bi05}).$
7795.8 5	$(1/2)^{-1}$	0.031 keV 10	1467.3 5	I I I I I I I I I I I I I I I I I I I
7837.3 5	3/2-	3.73 keV 38	1510.0 5	Γ =3.8 keV 2, Γ_p =3.8 keV 2 (1974Bi16).
7880.0 5	$3/2^+, 5/2^+$	0.008 keV 4	1554.0 5	-
8004.4 5	$3/2^+, 5/2^+$	0.011 keV 5	1682.1 5	$\Gamma_{\rm p}=21$ keV3 for $J^{\pi}=5/2^+$, 24 eV 3 for $J^{\pi}=3/2^+$ (1981Bi05).
8034.3 5	1/2-,3/2-	0.026 keV 7	1712.9 5	
8038.2 5	$1/2^{+}$	0.30 keV 2	1716.9 5	
8148.3 5	$1/2^{-}$	2.66 keV 27	1830.2 5	
8149.5 5	3/2-	0.56 keV 6	1831.5 5	
8209.4 5	$(5/2)^+$	0.033 keV 10	1893.2 5	Γ =100 eV 20, Γ _p =120 eV 20 (1974Bi16).
8210.6 5	1/2+	0.094 keV 15	1894.4 5	$\Gamma_{\rm p}$ =39 eV 5 for J^{π} =5/2 ⁺ , 44 eV 6 for J^{π} =3/2 ⁺ , 120 eV 11 for J^{π} =1/2 ⁺ (1981Bi05).
				Γ =270 eV 50, $\Gamma_{\rm p}$ =270 eV 50 (1974Bi16).
8216 [@]	5/2+ [@]	0.014 [@] keV 3	1900	$\Gamma = 14 \text{ eV } 4, \ \Gamma_{\gamma} = 0.78 \text{ eV} (1974\text{Bil6}).$
8243.4 5	3/2-	0.140 keV 15	1928.2 5	
8270.5 5	$3/2^+, 5/2^+$	0.005 keV 3	1956.1 5	
8278.8 5	$3/2^+, 5/2^+$	0.006 keV 3	1964.6 5	
8289.6 5	$(1/2)^{-}$	0.04 keV 1	1975.7 5	$\Gamma_{\rm p}$ =49 eV 11 for J^{π} =3/2 ⁻ , 48 eV 6 for J^{π} =1/2 ⁻ (1981Bi05).
8300.2 5	3/2-	0.073 keV 15	1986.7 5	
8383.3 5	3/2+,5/2+	0.023 keV 7	2072.2 5	Γ =30 eV 7, Γ _p =28 eV 6, Γ _γ =2.4 eV (1974Bi16). J ^π : 5/2 ⁺ in 1974Bi16.

³⁴S(p,p),(p,p'γ):resonances **1967Ko19,1977Ou01,1981Bi05** (continued)

³⁵Cl Levels (continued)

$E(level)^{\ddagger\ddagger}$	Jπa	Γ_p ‡	$E_p(lab)(keV)^{\ddagger}$	Comments
8404.4.5	$5/2^{-}.7/2^{-}$	0.002 keV 1	2093.9.5	
8405.6.5	$(5/2^{-},7/2^{-})$	0.001 keV /	2095.2.5	
8409.0.5	$1/2^{-}$	0.125 keV 15	2098.7.5	
8417.6.5	$1/2^+$	0.026 keV 7	2107.5 5	
8435.4 5	$(3/2)^+$	0.090 keV 15	2125.9.5	
8486.2.5	$3/2^+.5/2^+$	0.012 keV 5	2178.2.5	
8487.7.5	$3/2^{-}$	0.150 keV 15	2179.7 5	
8515.3 5	$1/2^{-}$	0.150 keV 15	2208.1.5	
8573.3 5	$(5/2)^+$	0.08 keV 1	2267.9 5	
8581.9 5	$1/2^+$	0.75 keV 8	2276.7 5	
8592.3 5	$3/2^+, 5/2^+$	0.003 keV 2	2287.4 5	
8615.8 5	5/2+	0.175 keV 20	2311.6 5	
8620.2 5	$3/2^+, 5/2^+$	0.002 keV 1	2316.2 5	
8632.5 5	$(3/2, 5/2^+)$	0.001 keV 1	2328.8 5	
8643.3 5	3/2+,5/2+	0.003 keV 2	2339.9 5	
8687.1 5	$5/2^{-},7/2^{-}$	0.001 keV 1	2385.0 5	
8689.2 5	$1/2^+$	0.20 keV 2	2387.2 5	
8690.6 5	$1/2^{-}$	6.44 keV 65	2388.6 5	
8697.7 5	3/2-	0.8 keV 1	2396.0 5	
8749.7 5	3/2-	0.30 keV 3	2449.5 5	
8774.7 5	$1/2^{-}$	0.571 keV 60	2475.2 5	
8781.0 5	3/2-	0.214 keV 25	2481.7 5	
8788.2 5	$(3/2^+, 5/2^+)$	0.001 keV 1	2489.1 5	
8799.0 <i>5</i>	$(3/2^+, 5/2^+)$	0.001 keV 1	2500.3 5	
8824.8 5	$1/2^{+}$	1.70 keV 17	2526.8 5	
8828.7 5	$1/2^{-}$	12.2 keV 12	2530.8 5	
8829.8 5	$1/2^{+}$	0.080 keV 15	2532.0 5	
8839.3 5	5/2-,7/2-	0.001 keV 1	2541.7 5	$\Gamma_{\rm p}$ =4 eV <i>1</i> for J^{π} =7/2 ⁻ , 2 eV <i>1</i> for J^{π} =5/2 ⁻ (1981Bi05).
8857.8 <i>5</i>	$3/2^+, 5/2^+$	0.010 keV 5	2560.8 5	
8869.8 <i>5</i>	$3/2^+, 5/2^+$	0.027 keV 10	2573.2 5	
8908.7 <i>5</i>	$3/2^+, 5/2^+$	0.002 keV 1	2613.2 5	
8955.4 5	$(3/2)^+$	0.075 keV 15	2661.3 5	
8959.4 5	$(1/2^-, 3/2^-)$	0.04 keV 1	2665.4 5	
8983.3 5	$5/2^{-}, 7/2^{-}$	0.003 keV 2	2690.0 5	
8985.3 5	3/2+,5/2+	0.025 keV 10	2692.1 5	
8997.9 5	5/2 ,1/2	0.002 keV I	2705.1 5	
9020.6 5	$\frac{3}{2}$	3.50 KeV 35	2728.4 5	
9031.3.5	$(5/2)^{-1}$	0.04 KeV I	2739.4 5	
9039.8 3	$\frac{1}{2}$	0.292 KeV 30	2748.2 3	
9046.1 5	$\frac{3}{2}, \frac{1}{2}$	0.001 keV I 0.005 keV I5	2/30./ 3	
9030.1 5	(3/2) $(5/2)^+$	0.093 keV 13 0.057 keV 10	2730.0 5	$\Gamma = 50 \text{ eV} 7 \text{ for } I^{\pi} = 5/2^{+} 67 \text{ eV} 8 \text{ for } I^{\pi} = 3/2^{+} (1081\text{B})(5)$
9083.3 5	(3/2)	0.037 Ke v 10	2793.2 5	$P_{p}=37 \text{ eV} / 101 \text{ J} = 3/2 , 07 \text{ eV} / 0101 \text{ J} = 3/2 (1901 \text{ B105}).$
9100 7 5	3/2-	0.20 keV 2	2799 4	K.I1.
9100.7 5	5/2	0.20 KC V 2	2818 1	P I -0 18
9114 4			2816 4	R I = 0.34
9120 4			2825 4	R.I0.34.
9127 4			2838 4	R I =0.16
9136 4			2847 4	R I =0.34
9147 4			2859 4	R I =0 27
9159 4			2871 4	R. I. =0.29.
9168 4	$(3/2^{-})$		2880 4	R.I.=3.70.
	(-1-)			$A_2 = +0.19 \ 133, A_4 = +0.017 \ 1480 \ (1967 K_0 19).$
9185 <i>4</i>			2898 4	R.I.=0.11.
9196 4			2909 4	
9207 4	$9/2^{+}$		2920 4	R.I.=1.70.

Continued on next page (footnotes at end of table)

34 S(p,p),(p,p' γ):resonances 1967Ko19,1977Ou01,1981Bi05 (continued)

³⁵Cl Levels (continued)

E(level) ^{†‡}	Jπ a	$E_p(lab)(keV)^{\ddagger}$	Comments
			$A_2 = +0.09 \ 18, \ A_4 = +0.37 \ 12 \ (1967 Ko19).$
9222 4		2936 4	R.I.=0.25.
9227 4	$5/2^{-}$	2941 4	R.I.=0.59.
			$A_2 = +0.59\ 28,\ A_4 = +0.29\ 32\ (1967Ko19).$
9241 4	$7/2^{+}$	2955 4	R.I.=2.32.
			$A_2 = +0.24 \ 40, \ A_4 = +0.27 \ 53 \ (1967 \text{Ko19}).$
9255 4		2970 4	R.I.=0.45.
9271 4		2986 4	R.I.=0.34.
9276 4		2991 4	R.I.=0.32.
9284 4	$5/2^{-}$	3000 4	R.I.=3.86.
			$A_2 = +0.72 \ 28, \ A_4 = -0.17 \ 29 \ (1967 Ko19).$
9294 4		3010 4	R.I.=0.68.
			R.I.=0.68.
9299 4		3015 4	R.I.=0.45.
9325 4	$5/2^{+}$	3042 4	R.I.=1.81.
			$A_2 = +0.81 \ 28, \ A_4 = -0.48 \ 35 \ (1967 Ko19).$
9336 4	$7/2^{+}$	3053 4	R.I.=1.00.
			$A_2 = +0.17 \ 29, \ A_4 = +0.34 \ 40 \ (1967 Ko19).$
9345 <i>4</i>		3062 4	R.I.=0.50.
9349 4		3067 4	R.I.=0.50.
9355 4		3073 4	R.I.=2.23.

[†] From $E_x=E_{cm}+Sp$ where S(p)=6370.82 5 (2011AuZZ) and E_{cm} deduced from $E_p(lab)$.

[‡] From 1977Ou01, unless otherwise noted; values from 1967Ko19 after E_x =9101 keV. [#] From 1971BrXT. [@] From 1974Bi16. [&] From 1981Bi05.

^a From comparison of experimental differential cross sections with theoretical predictions by R-Matrix calculations (1977Ou01) for levels $E_x=9101$ keV and from $p\gamma(\theta)$ (1967Ko19) for levels after that.