33 S(α ,d) 1975Na18,1977Na10

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen, John Cameron and Balraj Singh NDS 112,2715 (2011) 20-Oct-2011

1975Na18,1977Na10: E=40 MeV alpha beam produced from the Michigan State University cyclotron. Sulphur targets of a layer of the enriched S isotopes sandwiched between layers of Formvar and carbon foils. Reaction products detected in the focal plane of an Enge split-pole magnetic spectrograph with a proportional-counter plastic-scintillator combination, FWHM=40-60 keV. Measured $\sigma(E_d,\sigma)$. Deduced levels, J^{π} , L from the DWBA analysis.

³⁵Cl Levels

Target ${}^{33}S J^{\pi} = 3/2^+$.

E(level) [†]	\mathbf{J}^{π}	<u>L</u> ‡	E(level) [†]	\mathbf{J}^{π}	Γ_{\ddagger}	E(level) [†]	J^{π}	L‡
6200 10	$(11/2 \text{ to } 17/2)^+$	6	7870 10	$(11/2 \text{ to } 13/2)^+$	4+6	8840 10	$(17/2)^+$	6
7170 10	$(11/2 \text{ to } 17/2)^+$	6	8010 <i>10</i>	$(11/2 \text{ to } 17/2)^+$	6	9150 <i>10</i>	$(11/2 \text{ to } 17/2)^+$	6
7670 10	$(11/2 \text{ to } 17/2)^+$	6	8100 <i>10</i>	$(11/2 \text{ to } 17/2)^+$	6	9450 10	$(11/2 \text{ to } 17/2)^+$	6
7750 10	$(11/2 \text{ to } 17/2)^+$	6	8700 <i>10</i>	$(11/2 \text{ to } 17/2)^+$	6			

[†] From 1977Na10

 $^{^{\}ddagger}$ Extracted from the comparison of $\sigma(\theta)$ distributions with the DWBA predictions.