Pb(³⁵**Al**,³⁴**Aln**γ) **2017Ch36**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	ENSDF	15-Dec-2017

Coulomb dissociation of ³⁵Al on Pb target.

2017Ch36: ³⁵Al ions were produced by fragmentation of a 531 MeV/nucleon ⁴⁰Ar beam provided by the Heavy Ion Synchrotron (SIS18) at GSI. The fragments were separated by the FRagment Separator (FRS) according to magnetic rigidity. The secondary target was 2 g/cm² lead. Heavy breakup fragments were detected by 8 DSSSDs and separated by a large-area dipole magnet (ALADIN) and tracked using two large scintillator fiber detectors (GFIs); breakup neutrons were detected by the high-efficiency Large Area Neutron Detector (LAND); γ rays were detected with a spherical 4π Crystal Ball detector array of 162 NaI(TI) crystals. Measured E(fragment), E(n), E γ , Coulomb dissociation cross sections. Deduced relative populations of ³⁴Al, g.s. configuration of ³⁵Al. Comparison with theoretical calculations. 2014ChZZ report is from the same group.

³⁵Al Levels

E(level)	\mathbf{J}^{π}	Comments	
0	(5/2+,3/2+,1/2+)	 J^π: from comparisons of measured differential Coulomb dissociation cross section of ³⁵Al breaking up into ³⁴Al in its g.s. and/or 46-keV isomer with theoretical calculations from the direct breakup model using the plane-wave approximation assuming the valence neutron at different orbitals. Shell-model calculations using the SDPF-M interaction, and Coulomb breakup results favor 5/2⁺. Assignment is (5/2⁺) in Adopted Levels. Major configurations and spectroscopic factor for neutron deduced by 2017Ch36: (g.s.,4⁻ in ³⁴Al)⊗vp_{3/2}, spectroscopic factor=0.36 9 + (46 keV,1⁺ in ³⁴Al)⊗vd_{3/2}, spectroscopic factor=1.47 22 for J^π=5/2⁺ of ³⁵Al g.s. For J^π=1/2⁺ or 3/2⁺ of ³⁵Al g.s., (g.s.,4⁻ in ³⁴Al)⊗vf_{7/2}, spectroscopic factor=1.03 43 + (46 keV,1⁺ in ³⁴Al)⊗vs_{1/2}, spectroscopic factor=0.62 7. Other configurations for J^π=1/2⁺, 3/2⁺ of ³⁵Al g.s.: (46 keV,1⁺ in ³⁴Al)⊗vs_{1/2}, spectroscopic factor=0.72 8; and (46 keV,1⁺ in ³⁴Al)⊗vs_{1/2}, spectroscopic factor=0.94 22. 	