Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	ENSDF	15-Dec-2017

 $O(\beta^{-})=14170 \ 40$; $S(n)=5295 \ 8$; $S(p)=15836 \ 30$; $O(\alpha)=-14895 \ 16$ 2017Wa10

 $Q(\beta^{-}n)=11662$ 16, S(2n)=7869 10, S(2p)=38580 450 (2017Wa10). Evaluators deduce $Q((\beta^{-}2n)=4150$ 6 from mass values in 2017Wa10.

1979Sy01: ³⁵Al produced and identified in ¹²C(⁴⁰Ar,X) reaction.

1988Mu08: fragmentation of ⁴⁸Ca at 45 MeV/nucleon by ¹⁸¹Ta(⁸⁶Kr,X) reaction. Measured T_{1/2}.

Additional information 1.

1989Le16: fragmentation of ⁴⁸Ca at 45 and 55 MeV/nucleon by ¹⁸¹Ta(⁴⁸Ca,X) reaction at the French National Facility GANIL. Measured $T_{1/2}$ and delayed neutron emission probabilities.

1995ReZZ: Nuclei of interest produced by ²³²Th(p,X) at 800 MeV in the Time-of-flight spectrometer at the LAMPF accelerator. Measured half-life, delayed neutron-emission probability. See also 2008ReZZ communication.

1999YoZW: fragmentation of ⁴⁸Ca beam at 70 MeV/nucleon by ⁹Be and ¹⁸¹Ta targets at RIKEN. Measured half-life and delayed-neutron branches.

2001Nu01 (also 2002Nu02): ³⁵Al produced at the ISOLDE facility at CERN in fragmentation with 1.0 GeV proton beam on a uranium carbide target. Measured E γ , E γ , $\gamma\gamma$, $\beta\gamma$ -coin, T_{1/2} and delayed-neutron branches. Deduced levels, J^{π} , log ft for ³⁵Si.

2005Till: fragmentation of ³⁶S beam at 78 MeV/nucleon at GANIL. Measured β -delayed E γ , T_{1/2} and delayed neutron emission probability. Deduced levels, J^{π} , log *ft* for ³⁵Si. (conference paper).

2006Kh08: secondary beams produced by fragmentation of ⁴⁸Ca beam at 60.3 MeV/nucleon by ¹⁸¹Ta targets at GANIL. Used a silicon telescope as both reaction target and detection system. Measured energy-integrated reaction cross-sections. Deduced radii, isospin dependence. (conference paper).

2006FuZX: He(35 Al,X), E=40 MeV/nucleon, measured E γ , I γ . One γ ray at 760.1 keV 21 reported in in-beam γ -ray spectrum, but no level scheme was proposed.

2012Kw02: ⁹Be,Ni, ¹⁸¹Ta(⁴⁰Ar,X),E=140 MeV/nucleon, measured fission fragment spectra by energy loss from time-of-flight measurements, average isobaric velocities, parallel momentum transfers, and widths. Comparison with empirical formula EPAX, and predictions from internuclear cascade and deep inelastic models using Monte Carlo ISABEL-GEMINI and DIT-GEMINI computer codes.

2012Zh06: ⁹Be(⁴⁰Ar,X),E=57 MeV/nucleon, measured particle spectra, energy loss, time of flight, fragment yields, momentum distributions, cross sections; deduced fragment excitation energies, mass yield ratios at RIBLL and HIRFL facilities.

2015Mo17: ⁹Be(⁴⁰Ar,X),E=95 MeV/nucleon, measured time-of-flight, energy loss and angular distribution of fragments using RIKEN Projectile Fragment Separator; Analyzed transverse momentum distributions for fragments; deduced formulation for the width of transverse momentum distribution.

2017Ha23: E=69.2 MeV/nucleon ⁴⁰Ar beam was produced at the Heavy Ion Research Facility in Lanzhou (HIRFL). Target was 182.6 mg/cm² thick ⁹Be. Fragments were identified based on energy loss, time-of-flight, and magnetic rigidity on an event-by-event basis, and implanted into a 1500-µm-thick double-sided Si strip detector (DSSD) between two plastic scintillators. Measured half-life of ³⁵Al decay from implant- β decay curve. Comparisons with previous measurements.

Mass measurements: 2017Ga20, 2007Ju03, 1991Or01, 1991Zh24, 1987Gi05,

Nuclear structure theory calculations for binding energies, deformation, quadrupole moments, radii, levels, J^{π} , mass, $T_{1/2}$, etc.: eight references extracted from the NSR database are listed as document records in the ENSDF dataset.

This nuclide is of possible relevance to "island of inversion" near N=20.

³⁵Al Levels

Cross Reference (XREF) Flags

- A Coulomb excitation
- ${}^{9}\text{Be}({}^{36}\text{Si},{}^{35}\text{Al}\gamma)$ Pb(${}^{35}\text{Al},{}^{34}\text{Aln}\gamma)$ В
- С

Adopted Levels, Gammas (continued)

³⁵Al Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0	(5/2+)	38.3 ms 4	ABC	$%β^-=100; %β^-n=38 2 (2015Bi01); %β^-2n=0 (2001Nu01)$ %β ⁻ n: from 2015Bi01 evaluation, based on weighted average of 38 2 (2005Ti11, 38 3 in 2006AnZW); and 41 13 (2001Nu01,2002Nu02). Others: 26 4 (1995ReZZ,2008ReZZ); 40 10 (1989Le16); 87 +37-25 (1988Mu08). Theoretical T _{1/2} =70.7 ms, %β ⁻ n=97.5, %β ⁻ 2n=0.3 (2016Ma12). Theoretical T _{1/2} =10.7 ms, %β ⁻ n=8.3, %β ⁻ 2n=0.11 (2003Mo09). J ^π : (5/2 ⁺) as proposed in 2001Nu01 from systematics in the Al isotopes and 5/2 ⁺ in calculations of 1994Po05. Also 5/2 ⁺ from syst in 2017Au03. Major configurations deduced by 2017Ch36 from Coulomb breakup of ³⁵ Al on Pb target: for J ^π (³⁵ Al g.s.)=5/2 ⁺ , (g.s.,4 ⁻ in ³⁴ Al)⊗vp _{3/2} + (46 keV,1 ⁺ in ³⁴ Al)⊗vd _{3/2} . For J ^π =1/2 ⁺ or 3/2 ⁺ of ³⁵ Al g.s.: (g.s.,4 ⁻ in ³⁴ Al)⊗vf _{7/2} + (46 keV,1 ⁺ in ³⁴ Al)⊗vs _{1/2} . Other configurations for J ^π =1/2 ⁺ , 3/2 ⁺ of ³⁵ Al g.s.: (46 keV,1 ⁺ in ³⁴ Al)⊗vs _{1/2} , (46 keV,1 ⁺ in ³⁴ Al)⊗vs _{1/2} + (46 keV,1 ⁺ in ³⁴ Al)⊗vd _{5/2} . T _{1/2} : weighted average (normalized-residual method) of 38.4 ms 3 (2017Ha23, implant-β correlated decay curve); 36.8 ms 5 (2005Ti11, implant-β correlated decay curve, 36.4 ms 5 in 2006AnZW); 38.6 ms 4 (weighted average by 2001Nu01 from four independent measurements, three β-decays and one γ-decay). Others: 30 ms 4 (1995ReZZ,2008ReZZ, β-decay); 170 ms +90-50 (1988Mu08, β-decay); 30 ms 10 (1988Du2T, 1987DuZU); 130 ms +100-50 (1988Mu08, β-decay). Value is 37.6 ms 14 in 2015PL012 weighted average with point of poi
				Mean square absorption radius=1.188 fm ² 14 from 2006Kh08 in Si(35 Mg,X) reaction at E=33.79 and 38.79 MeV/nucleon, also measured energy-integrated cross sections, $\sigma_{\rm R}$ =2447 mb 46.
802 4			В	
1003 4			AB	B(E2)=0.0142 52 (1999Ib01). 2000PrZX give B(E2)≤0.0125 56 or B(E1)≤0.00020 9, authors also deduce values for B(M1) and B(M2).
1864 5			В	
1972 4			В	
2734 7			В	
3243 5			В	
4275? 9			В	

 † From least-squares fit to $E\gamma$ data.

$\gamma(^{35}\text{Al})$

E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Comments
802	802 4	100	0	$(5/2^+)$	
1003	1003 4	100	0	$(5/2^+)$	E_{γ} : from ⁹ Be(³⁶ Si, ³⁵ Al γ). Other: 1020 8 from Coul. ex.
1864	859 4	100 8	1003		
	1064 4	22 6	802		
1972	968 4	59 4	1003		
	1174 5	37 4	802		
	1972 6	100 7	0	$(5/2^+)$	
2734	1932 6	100	802		
3243	2237 6	100 8	1003		
	2440 7	4.7 7	802		
	3250 8	42 5	0	$(5/2^+)$	
4275?	4275 9	100	0	$(5/2^+)$	

[†] From ⁹Be(³⁶Si,³⁵Al γ).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{35}_{13}\text{Al}_{22}$