Adopted Levels

Type Author Citation Literature Cutoff Date

Full Evaluation Ninel Nica, Balraj Singh NDS 113,1563 (2012) 28-May-2012

 $Q(\beta^{-})=2.16\times10^{4} \text{ syst}; S(n)=1.2\times10^{3} \text{ syst}$ 2012Wa38

Note: Current evaluation has used the following Q record \$ 21553 syst 1227 syst 29750 calc -25690 calc 2011AuZZ,1997Mo25.

 $Q(\beta^-)$ and S(n) from 2011AuZZ; S(p) and $Q(\alpha)$ from 1997Mo25.

 $\Delta Q(\beta^{-})=718$, $\Delta S(n)=786$ (syst,2011AuZZ).

 $Q(\beta^- n) = 20803 786$, S(2n) = 300 100 (syst, 2011AuZZ).

Values in 2003Au03 (from syst): $Q(\beta^-)=20360\ 1210$, $S(n)=950\ 1140$, $Q(\beta^-n)=20160\ 1190$, $S(2n)=300\ 100$.

Two independent experiments have been done, one at RIKEN and the other at GANIL using two different ⁴⁸Ca beam energies. In each, two events were assigned to ³⁴Ne nuclide.

2002No11 (also 2002Lu19): 34 Ne seen in reaction: Ta(48 Ca,X) E=64 MeV/nucleon. Reaction fragments analyzed by RIPS recoil fragment separator at RIKEN facility. Identification by measurements of energy loss, total kinetic energy, time-of-flight and magnetic rigidity for each fragment. Measured $\sigma \approx 0.1$ pb for yield of 34 Ne in the above reaction corresponding to two events seen in 2002No11 (also 2002Lu19).

2004Lu19, 2003Lu11, 2002Lu19, 2002Lu09: RIKEN-GANIL-Dubna collaboration. ³⁴Ne confirmed in reaction: Ta(⁴⁸Ca,X) E=58.9 MeV/nucleon. Fragmentation of ⁴⁸Ca primary beam. Reaction fragments analyzed by RIPS recoil fragment separator at RIKEN facility and LISE-2000 spectrometer at GANIL. Isotopic identification by measurements of energy loss, total kinetic energy, time-of-flight and magnetic rigidity for each fragment. Two events (see figure 1a of 2002No11 or figure 1b of 2002Lu19) were observed for ³⁴Ne with measured *σ*=0.17 pb *12* for ³⁴Ne in GANIL experiment.

Additional information 1.

³⁴Ne Levels

 $\frac{\text{E(level)}}{0} \quad \frac{\text{J}^{\pi}}{0^{+}} \quad \frac{\text{T}_{1/2}}{>60 \text{ ns}}$

Comments

 $\%\beta^-=?; \%\beta^-n=?; \%\beta^-2n=?$

 $T_{1/2}$: limiting value from time-of-flight in 2002No11. Actual half-life is expected to be much longer as suggested by systematics value of 1 ms (systematics, 2003Au02 and 2011AuZY) and calculated value of 5.2 ms (1997Mo25).

Calculated $\%\beta^-$ n=1.1, $\%\beta^-$ 2n=39.9 (1997Mo25).