9 Be(34 Si, 33 Si γ) **2020Jo06**

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024			

2020Jo06: E=98.5 MeV/nucleon ³⁴Si beam was produced via fragmentation of 140 MeV/nucleon ⁴⁸Ca primary beam on a 846 mg/cm² ⁹Be target and separated using the A1900 fragment separator at NSCL. Reaction target was 100 mg/cm² ⁹Be. Reaction residues were identified event-by-event with the S800 spectrograph. *γ* rays were detected with the GRETINA array of 7 detector modules each consisting of 4 HPGe crystals with 36 segments each. Measured E*γ*, I*γ*, *γγ*-coin, cross sections, momentum distributions. Deduced levels, J, *π*, L-transfers, spectroscopic factors. Comparisons with available data and theoretical calculations.

2002En02: ⁹Be(³⁴Si,³³Siγ) E=73 MeV/nucleon produced by fragmentation of ⁴⁰Ar beam at 100 MeV/nucleon by a ⁹Be target and separated by A1200 Fragment-Recoil Separator. Measured Eγ, Iγ, γγ, (particle)γ coin with an array of NaI(Tl) detectors. All data are from 2020Jo06, unless otherwise noted.

33Si Levels

Inclusive cross section $\sigma(\text{total})=116 \text{ mb } 6$. Population fraction b_f in percentage (per 100 one-neutron removal reaction) and $\sigma_{\text{exp}}=\sigma(\text{total})\times b_f$ from 2020Jo06 are given under comments.

E(level) [†]	$J^{\pi \ddagger}$	<u>L</u> ‡	$C^2S^{\#}$	Comments
0.0	3/2+	2	3.90 47	b_f =50.8% 55, σ_{exp} =58.9 mb 71. σ =67 mb 10, C ² S=4.5 7 (2002En02).
1010.0 10	1/2+	0	1.34 8	$b_f = 22.8\%$ 7, $\sigma_{exp} = 26.4$ mb 16. $\sigma = 41$ mb 5, $C^2S = 2.0$ 3 (2002En02).
1435 <i>1</i>	7/2-	(3)	0.72 [@] 43	E(level): From 2020Jo06. Additional information 2. b_f =9.0% 54, σ_{exp} =10.4 mb 62.
1981.0 <i>14</i> 3159.1 <i>17</i> 4090.1 <i>18</i>	3/2 ⁻ (9/2 ⁻)	1	0.35 [@] 5	b_f =4.5% 6, σ_{exp} =5.2 mb 7. b_f =0.0% 4. b_f =1.0% 3.
4268.3 <i>40</i>	$(5/2^+)$	(2)	0.15 3	$\dot{b}_f = 1.7\% \ 3, \ \sigma_{exp} = 2.0 \text{ mb } 3.$ $\sigma = 4.9 \text{ mb } 7, \ C^2S = 1.3 \ 4 \text{ for a level at E} = 4290 \ 140, \ L = 2 \ (2002En02).$
4347.3 <i>40</i> 4932.1 <i>26</i>	(5/2+)	(2)	0.66 6	$b_f = 7.6\% 5$, $\sigma_{exp} = 8.8 \text{ mb } 6$. $b_f = 1.8\% 3$.
5443 6	$(5/2^+)$	(2)	0.10 ^{&} 3	$b_f=1.1\% \ 3, \ \sigma_{exp}=1.2 \ mb \ 4.$

[†] From a least-squares fit to γ -ray energies, unless otherwise noted.

γ (33Si

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
931 <i>I</i>	·	4090.1		3159.1	$(9/2^{-})$
971 <i>1</i>	12.6 <i>41</i>	1981.0	$3/2^{-}$	1010.0	1/2+
1010 <i>I</i>	100 8	1010.0	$1/2^{+}$	0.0	$3/2^{+}$
1724 2	10.6.39	3159.1	$(9/2^{-})$	1435	$7/2^{-}$

Continued on next page (footnotes at end of table)

[‡] From 2020Jo06, based on measured momentum distributions compared with theoretical calculations, unless otherwise noted.

[#] Summed spectroscopic factors deduced from $\sigma_{\rm exp}/\sigma_{\rm sp}$, where $\sigma_{\rm exp}$ is the measured cross section as given under comments and $\sigma_{\rm sp}$ is the sum of cross sections from stripping and diffraction mechanisms and computed from the residue- and neutron-target elastic eikonal S matrices using the double- and single-folding optical limit of Glauber's multiple-scattering theory, respectively (2020Jo06).

[@] Upper limit assuming only one-neutron knockout (2020Jo06).

[&]amp; Lower limit based on observed γ transition from state above S_n (2020Jo06).

⁹Be(³⁴Si,³³Siγ) **2020Jo06** (continued)

γ (33Si) (continued)

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	J^π_f
1773 2	7.54 60	4932.1		3159.1	(9/2-)
2655 <i>3</i>		4090.1		1435	$7/2^{-}$
4268 <i>4</i>	2.67 24	4268.3	$(5/2^+)$	0.0	$3/2^{+}$
4347 <i>4</i>	22.6 45	4347.3	$(5/2^+)$	0.0	$3/2^{+}$
5442 6	1.16 90	5443	$(5/2^+)$	0.0	$3/2^{+}$

[†] From 2020Jo06.

⁹Be(³⁴Si,³³Siγ) 2020Jo06

<u>Level Scheme</u>

Intensities: Relative I_{γ}

Legend

