²H(³²Si,p) **2024Ch33**

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen and Balraj Singh NDS 199,1 (2025) 30-Sep-2024

2024Ch33: E=8.3 MeV/nucleon 32 Si beam was produced from the ReA6 reaccelerator-beam facility at NSCL. Target was 120 μ g/cm² (Cd₂)_n. Protons were detected with the SOLARIS solenoidal spectrometer (FWHM=150 keV). Measured σ (E_p, θ), θ cm \approx 10° to 40°. Deduced levels, J, π , spectroscopic factors from DWBA analysis. Comparisons with shell-model calculations.

³³Si Levels

The authors state that 4.52 and 5.43-MeV levels have fitted widths of 220(80) keV and <90 keV, respectively, but no further details are given about these quantities.

E(level) [†]	J^{π}	L [‡]	$C^2S_{rel}^{\ddagger}$	Comments
0.0	3/2+	2	0.37 4	
1010	$1/2^{+}$	0	0.25 5	
1435	$7/2^{-}$	3	0.89 5	
1981	$3/2^{-}$	1	0.92 6	
3190 20	$(7/2^{-})$	(3)	0.07 2	
3580 20	1/2-	1	0.91 7	J^{π} : the authors state that the sum-rule analysis strongly supports $1/2^{-}$ since it almost exhausts the full $1p_{1/2}$ orbital single-particle strength.
4520 20		(1,2)		C^2S_{rel} : 0.08 2 for L=(1), 0.10 3 for L=(2) (2024Ch33).
5430 40		(3)		C^2S_{rel} : 0.10 3 for L=(3).

 $^{^{\}dagger}$ As given in 2024Ch33. J^{π} values are listed here only for the purpose of extracting C²S.

[‡] From DWBA analysis of measured $\sigma(\theta)$ (2024Ch33). Relative spectroscopic factors C^2S_{rel} are deduced by the authors by normalizing the summed strength of g.s. and 1010 level to $\Sigma(2J+1)C^2S=2.0$ and then applying the same normalization factor to other states.