208 Pb(36 S,X γ) 2010Wa20

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024				

2010Wa20: 215 MeV ${}^{36}S^{9+}$ beam was produced from the Tandem-ALPI accelerator complex at the INFN Legnaro National Laboratory, Italy. Target was 208 Pb isotopically enriched to 99.7% with thickness of 300 μ g/cm² on a 20 μ g/cm² carbon backing. Projectile-like fragments were analyzed with PRISMA, a large acceptance-angle magnetic spectrometer. Identification of fragments made by Time-Of-Flight (tof), energy loss and total energy with detectors of a ten-element 100 cm long multi-wire parallel-plate avalanche counter (MWPPAC), a position-sensitive micro-channel plate (MCP) and a 10x4 element ionization chamber. Gamma rays detected by an array of 25 escape-suppressed Ge clover detectors (CLARA) in coincidence with the detection of recoils. Measured E γ , I γ , (projectile-like fragments) γ coin. Deduced levels, J, π . The $\gamma\gamma$ coin was not possible due to low counting rates. Comparison with $l\hbar\omega p$ -sd-pf large-scale shell-model calculations.

Additional information 1.

Level scheme here is established by 2010Wa20 on the basis that in binary grazing reactions, yrast or near yrast states are preferentially populated.

³³Si Levels

E(level) [†]	$J^{\pi \ddagger}$
0	3/2+
1010 <i>1</i>	$1/2^{+}$
1435 2	7/2-
1981.0 <i>15</i>	$(3/2^{-})$
3159 <i>3</i>	$(9/2^{-})$
4090 <i>3</i>	$(11/2^{-})$
4931? <i>4</i>	$(11/2^{-})$

[†] From $E\gamma$ data.

[‡] As proposed by 2010Wa20 based on shell-model predictions.

 $\gamma(^{33}{\rm Si})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
971 <i>1</i>	22 3	1981.0	$(3/2^{-})$	1010	1/2+
1010 1	100 5	1010	$1/2^{+}$	0	$3/2^{+}$
1435 2	86 7	1435	7/2-	0	$3/2^{+}$
1724 2	49 <i>4</i>	3159	$(9/2^{-})$	1435	$7/2^{-}$
1772 [‡] 2	14 2	4931?	$(11/2^{-})$	3159	$(9/2^{-})$
2655 2	24 <i>3</i>	4090	$(11/2^{-})$	1435	$7/2^{-}$

[†] From 2010Wa20.

[‡] Placement of transition in the level scheme is uncertain.

 $^{33}_{14}{
m Si}_{19}$