³³Cl ε + β ⁺ decay (2.5059 s) 1980Wi13

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024					

Parent: ³³Cl: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=2.5059$ s 23; $Q(\varepsilon)=5582.5$ 4; $\%\varepsilon+\%\beta^+$ decay=100

 33 Cl-J^{π},T_{1/2}: From the Adopted Levels of 33 Cl.

³³Cl-Q(*ε*): From 2021Wa16.

1980Wi13: ³³Cl was produced by ³²S(d,n)³³Cl reaction with 11.0 MeV deuterons from the ONR-CIT tandem accelerator on a natural sulphur target. γ rays were detected with a Ge(Li) detector. Measured E γ , I γ . Deduced levels, ε -decay branching ratios, log *ft*. Comparisons with available data.

1987Bo21: ³³Cl was produced from the β^+ -decay of ³³Ar at ISOLDE facility of CERN. γ rays were detected with a Ge(Li) detector. Measured E γ , I γ .

2014Ko17: ³³Cl was produced from the β^+ -decay of ³³Ar at ISOLDE facility, CERN. The γ rays were detected with cluster detectors. Measured E γ , I γ for 841.3 γ , 1966.9 γ and 2867 γ .

1970Ba65: ³³Cl source was produced with 2.8 MeV deuteron beam on sulfur powder of either natural or enriched ³²S. γ rays were detected with two coaxial Ge(Li) detectors. Measured E γ , I γ , γ (t). Deduced levels, parent T_{1/2}, ε -decay branching ratios, log *ft*.

Half-life measurements: 1958Mu05, 1960Ja12, 1970Sc16, 1972Es02, 1973Ta04, 1977Az01, 2015Gr14. Others: 1940Ho01, 1941Wh02, 1948Sc20, 1951Bo56, 1954Ty33, 1960Wa04, 1962Va27, 1970Ba65.

Additional information 1.

β measurements: 1941Wh02, 1951Bo56, 1960Wa04, 1962Va27.

E(level) [†]	J ^{π‡}	T _{1/2} ‡	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡
0.0	$3/2^{+}$	stable	3935.1 8	3/2+	24 fs 7
840.9 <i>4</i>	$1/2^{+}$	1.17 ps 7	4053.2 8	$1/2^{+}$	12 fs 8
1966.3 4	$5/2^{+}$	94 fs <i>1</i> 4	4144.3 10	5/2+	24 fs 7
2312.6 7	$3/2^{+}$	117 fs 17	4375.4 8	$1/2^{+}$	24 fs 10
2866.9 5	$5/2^{+}$	12 fs 4	4424.7 8	$1/2^+, 3/2$	19 fs <i>10</i>
3832.0 8	$5/2^{+}$	30 fs 8	4746.2 8	1/2+,3/2+,5/2+	<7 fs

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV for E γ values without uncertainties.

[‡] From the Adopted Levels.

ε, β^+ radiations

³³S Levels

E(decay)	E(level)	$\mathrm{I}\beta^+$ #	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(836.3 14)	4746.2		4.1×10 ⁻⁵ 12	5.4 +2-1		εK=0.9059 5; εL=0.08215 38; εM=0.01192 16
(1157.8 14)	4424.7	$< 6.7 \times 10^{-7}$	$<5.6 \times 10^{-5}$	>5.5	$<5.7 \times 10^{-5}$	av Eβ=56.29 36; εK=0.8953 7; εL=0.08108 37; εM=0.01176 16
(1207.1 14)	4375.4	<1.6×10 ⁻⁶	$<4.2 \times 10^{-5}$	>5.7	$<4.4 \times 10^{-5}$	av Eβ=75.73 36; εK=0.8722 11; εL=0.07897 37; εM=0.01146 15
(1438.2 15)	4144.3	$<1.1\times10^{-5}$	$<1.5 \times 10^{-5}$	>6.3	$<2.6 \times 10^{-5}$	av Eβ=168.19 45; εK=0.5265 49; εL=0.04764 49; εM=0.00691 11
(1529.3 14)	4053.2	2.8×10 ⁻⁵ 14	1.9×10 ⁻⁵ 6	6.57 31	4.7×10 ⁻⁵ 15	av Eβ=205.50 37; εK=0.3743 42; εL=0.03387 41; εM=0.00491 9
(1647.4 14)	3935.1	$<5.2 \times 10^{-5}$	<1.8×10 ⁻⁵	>6.3	$<7 \times 10^{-5}$	av Eβ=254.61 38; εK=0.2342 31; εL=0.02119 29; εM=0.00307 6
(1750.5 14)	3832.0	$<7.6 \times 10^{-5}$	$<1.6 \times 10^{-5}$	>6.4	<9.2×10 ⁻⁵	av Eβ=298.10 38; εK=0.1577 22; εL=0.01427 21; εM=0.00207 4
(2715.6 12)	2866.9	0.43 6	0.0064 9	4.19 +8-5	$0.44^{\ddagger} 6$	av E β =725.91 27; ε K=0.01314 18;

Continued on next page (footnotes at end of table)

ϵ, β^+ radiations (continued)						
E(decay)	E(level)	Iβ ⁺ #	Iɛ [#]	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(3269 9 13)	2312.6	0 0351 48	2 19×10 ⁻⁴ 30	5 82 +7-5	0 0353 48	$\varepsilon L=0.001188 \ 17; \ \varepsilon M=1.723\times 10^{-4} \ 33$ I($\varepsilon + \beta^+$): other: 0.56 6 (1970Ba65). av E $\beta = 982 \ 31 \ 37; \ \varepsilon K = 0.00562 \ 8; \ \varepsilon L = 5.08\times 10^{-4}$
(520).9 15)	2312.0	0.0551 10	2.17/10 50	5.02 17 5	0.0555 10	$7; εM=7.37 \times 10^{-5} 14$ I(ε+β ⁺): other: <0.05 (1970Ba65).
(3616.2 12)	1966.3	0.46 6	0.00186 24	4.98 6	0.46 [‡] 6	av $E\beta$ =1144.86 28; ε K=0.00367 5; ε L=3.312×10 ⁻⁴ 47; ε M=4.80×10 ⁻⁵ 9 I(ε + β^{+}); other: 0.56.6 (1970Ba65)
(4741.6 12)	840.9	0.48 6	6.7×10 ⁻⁴ 8	5.66 6	0.48 6	av $E\beta$ =1681.09 29; ε K=0.001262 17; ε L=1.140×10 ⁻⁴ 16; ε M=1.654×10 ⁻⁵ 31
(5582.5 15)	0.0	98.50 <i>19</i>	0.0755 10	3.753 +2-1	98.58 <i>19</i>	av $E\beta$ =2086.86 <i>19</i> ; εK =6.94×10 ⁻⁴ <i>9</i> ; εL =6.27×10 ⁻⁵ <i>9</i> ; εM =9.09×10 ⁻⁶ <i>17</i> I(ε + β ⁺): as given in 1980Wi13, deduced from 100-I β (excited states) by assuming unobserved feedings to higher levels negligible. Other: 98.3 2 deduced the same way in 1970Ba65, but fewer γ rays are observed in that work than 1980Wi13.

³³Cl ε + β ⁺ decay (2.5059 s) **1980Wi13** (continued)

[†] Deduced from measured γ -ray intensities, compared with measured intensity of 511-keV radiation produced by the annihilation for excited states (1970Ba65,1980Wi13), unless otherwise noted. Quoted values are from 1980Wi13.

[‡] Reported in 1980Wi13 as weighted average of value measured (but not listed) by 1980Wi13 and value from 1970Ba65.

[#] Absolute intensity per 100 decays.

 $\gamma(^{33}S)$

I γ normalization: Weighted average of 0.00435 60, 0.00436 57 and 0.00436 58 from I γ intensity balance and measured %I β in 1980Wi13 at 841, 1966, and 2867 levels, respectively.

1987Bo21 report %I γ =0.55 6, 0.42 4 and 0.55 5 for 841 γ , 1966 γ and 2867 γ , respectively, as per 100 ³³Ar decays, but from comparisons with values in 1980Wi13 and 1970Ba65, these values are more likely per 100 ³³Cl decays.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
840.7 9	118.6 36	840.9	1/2+	0.0 3/2+	M1+E2	0.19 3	%Iγ=0.517 70 E _γ : weighted average of 841.3 10 (2014Ko17), 840.4 9 (1987Bo21), and 840.5 10 (1970Ba65). I _γ : others: 96 12 (1970Ba65), 100 11 (1987Bo21). %Iγ=0.55 6 in 1987Bo21 gives a relative I _γ =100 11
1125 1472 1519 1966.4 5	1.38 <i>34</i> 5.79 <i>33</i> <0.52 104.2 <i>16</i>	1966.3 2312.6 3832.0 1966.3	5/2+ 3/2+ 5/2+ 5/2+	840.9 1/2+ 840.9 1/2+ 2312.6 3/2+ 0.0 3/2+	E2 M1+E2 M1+E2 M1+E2	-0.32 4 -0.29 9 -0.58 4	 'I'' '''₁γ=0.0060 17 ''₁γ=0.0252 36 ''₁γ<0.0023 ''₁γ=0.454 60 E_γ: weighted average of 1966.9 12 (2014Ko17), 1967.3 9 (1987Bo21), and 1966.1 5 (1970Ba65). I_γ: others: 100 7 (1970Ba65), 76 7 (1987Bo21). ''₁γ=0.42 4 in 1987Bo21 gives a relative Iγ=76 7.
2026	1.54 19	2866.9	5/2+	840.9 1/2+	[E2]		%I _Y =0.0067 <i>12</i>

Continued on next page (footnotes at end of table)

			CI ε+ρ	decay (2	.5059 8) 1980 WI	15 (continued)		
γ ⁽³³ S) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	Comments	
2312	2.31 14	2312.6	$3/2^+$	0.0	$\frac{3}{2^{+}}$	M1+E2	-28 +16-80	$\%$ I γ =0.0101 15	
2866.8 <i>5</i>	100.0 18	2866.9	5/2 ⁺	0.0	3/2+	M1+E2	+0.116 9	% $I\gamma = 0.43658$ $K_{I\gamma} = 0.43658$ E_{γ} : weighted average of 2867 <i>3</i> (2014Ko17), 2867.7 <i>9</i> (1987Bo21), and 2866.5 <i>5</i> (1970Ba65). I_{γ} : others: 100 <i>7</i> (1970Ba65), 100 <i>9</i> (1987Bo21). % $I\gamma = 0.555$ in 1987Bo21 gives	
3094	< 0.3	3935.1	3/2+	840.9	$1/2^+$	(M1+E2)	>-1.7	a relative $I\gamma$ =100 9. % $I\gamma$ <0.0013	
3212	< 0.13	4053.2	1/2	840.9	1/2 '			$\%1\gamma < 5.7 \times 10^{-4}$	
2022	< 0.09	4424.7	$1/2^{+}, 3/2$	840.9	$1/2^{-1}$	D+Q	.0.27.2	$\%1\gamma < 3.9 \times 10^{-4}$	
3832 2005	< 0.12	3832.0 4746 2	$\frac{3}{2}$	0.0 840.0	$\frac{3}{2}$	MIT+E2	+0.372	$\%1\gamma < 5.2 \times 10^{-4}$	
2025	< 0.008	4/40.2	1/2 , $3/2$, $3/2$	840.9	$\frac{1}{2}$	M1 + E2	0.22.7	$\%1\gamma < 5.0 \times 10$	
4053	< 0.095	4053.2	$\frac{3}{2}$	0.0	$\frac{3}{2}^{+}$	WIT+E2	-0.23 7	$\%_{1} < 4.1 \times 10$ $\%_{1} = 0.00048 / 5$	
4144	< 0.058	4144.3	$5/2^+$	0.0	$3/2^+$	(M1+E2)		$\%$ I γ < 2.5×10 ⁻⁴	
4375	< 0.099	4375.4	$1/2^+$	0.0	$3/2^+$	()		$\%$ I γ <4.3×10 ⁻⁴	
4424 4746	<0.067 0.085 23	4424.7 4746.2	1/2 ⁺ ,3/2 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺	0.0 0.0	3/2 ⁺ 3/2 ⁺			%Iγ<2.9×10 ⁻⁴ %Iγ=0.00037 11	

 33 Cl c+ β^+ decay (2 5059 s) 1080Wi13 (continued)

[†] From 1980Wi13, unless otherwise noted. Values of intensities are relative to Iγ(2866.8γ)=100.
[‡] From the Adopted Gammas.
[#] For absolute intensity per 100 decays, multiply by 0.00436 *57*.

 ${}^{33}_{16}S_{17}$ -4

³³Cl ε decay (2.5059 s) 1980Wi13

