³⁴S(pol d,t) 1988Kh04

History						
Type	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024			

1988Kh04: E=52 MeV polarized deuteron beam was produced from the Karlsruhe isochronous cyclotron. Target was H_2S gas (89.8% enriched in ^{34}S). Reaction products were detected with 4 Δ E-E telescopes of surface-barrier counters (FWHM=130 keV). Measured triton spectra, $\sigma(\theta)$, analyzing powers (i $T_{11}(\theta)$) from 10° to 30° (c.m.). Deduced levels, isospins, J, π , L-transfers, spectroscopic factors from DWBA analysis of angular distribution and vector analyzing power data. Comparisons with available data.

³³S Levels

Spectroscopic factor $C^2S = \sigma(\theta)_{exp}/\sigma(\theta)_{DWBA}/(N \times g)$, where N is the normalization factor and $g = (2J_f + 1)/(2J_i + 1)$ (1966Ba54).

E(level) [†]	J^{π}	L [†]	C^2S^{\dagger}	Comments
0 4	3/2+‡	2	2.35 [‡]	T=1/2
840 4	$1/2^{+}$	0	0.97	T=1/2
1943 <i>13</i>	5/2+#	2	0.07 [#]	T=1/2
2309 10	3/2+‡	2	0.20^{\ddagger}	T=1/2
2866 4	5/2+#	2	1.89 <mark>#</mark>	T=1/2
3833 2	5/2 ^{+#}	2	0.87 <mark>#</mark>	T=1/2
4868 20	$(5/2^+)^{\#}$	(2)	0.11 [#]	T=1/2
5475 9	$1/2^{+}$	0	0.54	T=3/2
5804 <i>24</i>	$(5/2^+)^{\#}$	(2)	0.18 [#]	T=1/2
6330 12	5/2 ^{+#}	2	0.27 [#]	T=1/2
6852 <i>34</i>	3/2+‡	2	0.62^{\ddagger}	T=3/2
7310 <i>30</i>	5/2 ^{+#}	2	0.70 [#]	T=3/2
8234 24	5/2 ^{+#}	2	0.41 [#]	T=1/2
8794 22	5/2+#	2	0.36 [#]	T=3/2
9426 25	5/2 ^{+#}	2	0.81 [#]	T=3/2
10356 <i>30</i>	5/2 ^{+#}	2	1.35 [#]	T=3/2
12350? 70		[2]	≤0.2	C ² S: 1d _{5/2} neutron transfer assumed in DWBA calculations.

[†] From 1988Kh04, with L and C²S from DWBA analysis of measured $\sigma(\theta)$ (1988Kh04).

[‡] L-1/2 from analyzing power measurement.

[#] L+1/2 from analyzing power measurement.