24 Mg(14 N, α p γ) **2017Ay04**

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024

2017Ay04: E=40 MeV ¹⁴N beam was produced from the LNL-Legnaro XTU-tandem accelerator. Target was 1 mg/cm² 99.7% enriched ²⁴Mg evaporated on an 8 mg/cm² gold layer. γ rays were detected with the 4 π GASP array composed of 40 Compton-suppressed HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (ADO), Doppler-shift attenuation. Deduced levels, J, π , γ -ray multipolarities, mixing ratios, transition strengths. Comparison with large-scale shell-model calculations using the ANTOINE code with the USD, PSDPF, and *sdfp* effective interactions.

³³S Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	$3/2^{+}$		
841.0 2	$1/2^+$		
1967.3 2	$5/2^+$		
2934.8 <i>3</i>	$7/2^{-}$		
2969.4 5	7/2+		
4048.8 5	9/2+		
4095.0 5	$7/2^{+}$		
4730.3 5	9/2-	90 fs 28	$T_{1/2}$: from mean lifetime τ =0.13 ps 4.
4866.9 5	$11/2^{-}$	280 fs 70	$T_{1/2}$: from mean lifetime τ =0.40 ps 10.
5478.6 5	9/2-	≤28 fs	$T_{1/2}$: from mean lifetime $\tau \leq 0.04$ ps.
5722.0 8	$9/2^{+}$		
6525.4 11	$11/2^{-}$	125 fs 35	$T_{1/2}$: from mean lifetime τ =0.18 ps 5.
7000.2 5	$11/2^{+}$	222 fs 42	$T_{1/2}$: from mean lifetime τ =0.32 ps 6.
7181.3 8	$13/2^{-}$	62 fs 21	$T_{1/2}$: from mean lifetime τ =0.09 ps 3.
7575.7 8	$13/2^{-}$	≤28 fs	$T_{1/2}$: from mean lifetime $\tau \le 0.04$ ps.
7819.2 10	$15/2^{-}$	55 fs 21	$T_{1/2}$: from mean lifetime τ =0.08 ps 3.
8639.8 8	$15/2^{+}$	284 fs 28	$T_{1/2}$: from mean lifetime τ =0.41 ps 4.
9814.4 <i>15</i>	$17/2^{+}$	118 fs 28	$T_{1/2}$: from mean lifetime τ =0.17 ps 4.
11700.8 20	$19/2^{+}$	35 fs 14	$T_{1/2}$: from mean lifetime τ =0.05 ps 2.

[†] From a least-squares fit to γ -ray energies.

[‡] As given in 2017Ay04 based on known assignments of low-lying levels and their measured $\gamma\gamma(\theta)$ (ADO) data.

[#] From DSAM in 2017Ay04.

$\gamma(^{33}S)$

 $R(ADO)=(I\gamma(34^\circ)+I\gamma(146^\circ))/2I\gamma(90^\circ)$. Expected value is ≈ 1.35 for stretched quadrupole ($\Delta J=2$) and for $\Delta J=0$ dipole transitions, and ≈ 0.75 for stretched $\Delta J=1$ dipole transitions (2017Ay04).

B(M1) values are in μ_N^2 units, B(E1) in e²b, B(E2) in e²b² units.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
394.4 5	0.5 1	7575.7	13/2-	7181.3	13/2-	D	ADO=1.34 <i>10.</i> %I γ branching=5.4 <i>14.</i> B(M1)>1.156 (2017A γ 04)
611.7 4	0.3 1	5478.6	9/2-	4866.9	11/2-	D	$\begin{array}{l} R(ADO) = 0.81 \ 10, \\ \% Iy \ branching = 3.9 \ 4, \\ R(M) > 0.224 \ (2017 \ Ay04). \end{array}$
637.9 10	0.4 1	7819.2	15/2-	7181.3	13/2-	D	$ADO=0.82 \ 10.$ %Iy branching=2 1. P(MI)=0.055 \ 24 (2017Ay04)
748.3 5	0.6 2	5478.6	9/2-	4730.3	9/2-	D	$R(ADO)=1.35 \ 12.$
					Continue	ed on next	page (footnotes at end of table)

				24 N	Ig (¹⁴ N, <i>c</i>	α p γ) 2017	Ay04 (cor	ntinued)	
$\gamma(^{33}S)$ (continued)									
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	Comments	
								% $I\gamma$ branching=6.7 4.	
841.0.2	271	841.0	1/2+	0.0	3/2+			$B(M1) \ge 0.210 (201/Ay04).$ %Iv branching=100	
967.5 3	43.4 15	2934.8	$7/2^{-}$	1967.3	$5/2^+$	D		R(ADO)=0.74 2.	
								$\%$ I γ branching=57 3.	
1002.3 8	1.9 2	2969.4	7/2+	1967.3	5/2+	D		R(ADO)=0.745.	
1050.3 9	0.6.2	7575.7	$13/2^{-}$	6525.4	$11/2^{-}$	D		$ADO=0.69 \ 10.$	
			- /		,			$\%$ I γ branching=6.1 6.	
10(4.1.11	0 5 10	0(20.0	15/0+		10/0-	D		B(M1)≥0.074 (2017Ay04).	
1064.1 11	8.5 18	8639.8	15/21	15/5.7	13/2	D		ADO=0.73 5. %Iv branching=73 14	
1079.2 7	3.3 8	4048.8	$9/2^{+}$	2969.4	$7/2^{+}$	D+Q		$R(ADO)=0.48 \ 8.$	
						-		$\%$ I γ branching=19 <i>1</i> .	
1113.8 14	0.6 2	4048.8	$9/2^+$	2934.8	$7/2^{-}$	D		R(ADO) = 0.75 4.	
1120.2 2	1.2 2	1907.3	5/2	841.0	1/2	Q		R(ADO)=1.55 4. %Iv branching=1.2.2.	
1174.5 17	10.5 29	9814.4	$17/2^{+}$	8639.8	$15/2^{+}$	D		ADO=0.77 4.	
								$\%$ I γ branching=74 30.	
1278 2 0	0.0.3	7000.2	11/2+	5722.0	$0/2^{+}$	M1 + E2	052	B(M1)=0.152 72 (2017Ay04).	
12/0.2 9	0.9 5	7000.2	11/2	5722.0	9/2	MITTL2	-0.3 2	$R(ADO)=0.47 \ 10.$	
								B(M1)=0.003 <i>I</i> , B(E2)=0.0006 <i>4</i> (2017Ay04).	
1383.3 7	1.5 4	5478.6	9/2-	4095.0	7/2+	D		R(ADO)=0.73 6.	
								% 1γ branching=17 5. P(E1)>02×10 ⁻⁷ (2017 Av(04))	
1458.5 10	0.6 2	8639.8	$15/2^{+}$	7181.3	$13/2^{-}$			$B(E1) \ge 93 \times 10^{-10} (2017 \text{Ay04}).$	
1521.5 6	5.3 9	7000.2	$11/2^{+}$	5478.6	9/2-	D		R(ADO)=0.75 6.	
1639.6 9	23.9 37	8639.8	$15/2^{+}$	7000.2	$11/2^{+}$	E2		ADO=1.37 7.	
1673 1 13	0.09.3	5722.0	9/2+	4048.8	$9/2^{+}$			B(E2)=0.0122 26 (2017Ay04).	
1760.8 9	15.1 20	4730.3	$9/2^{-}$	2969.4	$7/2^+$	D		R(ADO)=0.79 4.	
								%I γ branching=84 14.	
1705 0 20	207	(505.4	11/0-	4720.2	0/2-		050	$B(E1)=75\times10^{-7}$ 28 (2017Ay04).	
1795.0 20	2.0 /	6525.4	11/2	4/30.3	9/2	MI+E2	-0.5 2	R(ADO)=0.44 10. %Iv branching=100	
								$B(M1)=0.044 \ 14, B(E2)=0.0049 \ 32$	
	• • •		o / o –		=			(2017Ay04).	
1795.4 13	2.9 4	4730.3	9/2-	2934.8	7/2-	(M1+E2)		R(ADO)=1.45 7.	
								$B(M1)=0.006 \ 3, B(E2)=0.0027 \ 12 \ (2017Av04)$	
								for $\delta(\text{E2/M1})=1.0$ 3 taken from 2011Ch49	
								evaluation.	
1931 9 6	48 2 28	4866 9	$11/2^{-}$	2934.8	7/2-	F2		For $B(M1)$ and $B(E2)$, 201/Ay04 used. B(ADO)=1.20.9	
1991.90	10.2 20	1000.9	11/2	295 1.0	1/2	112		$\%$ I γ branching=100.	
			I		- (- I			B(E2)=0.0076 <i>19</i> (2017Ay04).	
1967.2 <i>3</i>	100.0 57	1967.3	5/2+	0.0	3/2+	D+Q		R(ADO)=0.465.	
1995.1 <i>19</i>	3.7 14	9814.4	$17/2^{+}$	7819.2	$15/2^{-}$	D		$ADO=0.75 \ 11.$	
2081.5 6	13.5 14	4048.8	9/2 ⁺	1967.3	5/2+	Q		R(ADO)=1.27 6.	
2007.0.15	175	7575 7	12/2-	E 170 C	0/2-	E2		%Iy branching=78 4.	
2097.0 13	1.7 3	1313.1	15/2	54/8.6	9/2	E2		ADU=1.27 7. % $V_{\rm ranching}=18.6$	
								$B(E2) \ge 0.0083$ (2017Ay04).	

Continued on next page (footnotes at end of table)

²⁴Mg(¹⁴N,αpγ) 2017Ay04 (continued)

$\gamma(^{33}S)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments
2127.7 14	0.3 1	4095.0	7/2+	1967.3	5/2+	D+Q		R(ADO)=0.95 11.
				10110		-		$\%$ I γ branching=100.
2133.2 6	3.0 6	7000.2	11/2+	4866.9	$11/2^{-}$	D		R(ADO)=1.31 9.
2269.8 5	5.6 9	7000.2	11/2+	4730.3	9/2-	D		R(ADO)=0.75 5.
2314.3 20	7.59	7181.3	$13/2^{-}$	4866.9	$11/2^{-}$	M1+E2	+0.4 1	R(ADO)=1.31 8.
								%ly branching=75 12.
								$B(M1)=0.033 \ I3, B(E2)=0.0014 \ 9 \ (2017Ay04).$
2450.9 25	2.5 4	7181.3	$13/2^{-}$	4730.3	9/2-	E2		R(ADO)=1.34 <i>13</i> .
								$\%$ I γ branching=25 5.
								$B(E2)=0.0026 \ IO \ (2017 Ay 04).$
2509.2 7	3.2 7	5478.6	9/2-	2969.4	7/2+	D		R(ADO)=0.79 9.
								%I γ branching=37 9.
								$B(E1) \ge 34 \times 10^{-7}$ (2017Ay04).
2543.7 6	3.0 7	5478.6	9/2-	2934.8	7/2-	M1+E2	+0.7 3	R(ADO)=1.37 8.
								%I γ branching=35 2.
								B(M1)≥0.019, B(E2)≥0.0021 (2017Ay04).
2708.7 15	1.7 5	7575.7	$13/2^{-}$	4866.9	$11/2^{-}$	D		ADO=0.71 8.
								$\%$ I γ branching=18 6.
								B(M1)≥0.012 (2017Ay04).
2752.5 14	0.15 5	5722.0	$9/2^{+}$	2969.4	7/2+			
2845.3 17	4.7 12	7575.7	$13/2^{-}$	4730.3	9/2-	E2		R(ADO)=1.37 5.
								%I γ branching=51 15.
								B(E2)≥0.0051 (2017Ay04).
2905.1 <i>3</i>	0.4 1	7000.2	$11/2^{+}$	4095.0	7/2+	[E2]		$\%$ I γ branching=1.8 5.
								B(E2)=0.000022 7 (2017Ay04).
2934.7 4	33.1 13	2934.8	$7/2^{-}$	0.0	$3/2^{+}$	Q+O		R(ADO)=1.17 4.
								%I γ branching=43 3.
2951.3 8	7.3 12	7000.2	$11/2^{+}$	4048.8	9/2+	D		R(ADO)=0.84 3.
								$\%$ I γ branching=32 6.
								$B(M1)=0.002 \ l \ (2017Ay04).$
2952.2 12	17.9 32	7819.2	$15/2^{-}$	4866.9	$11/2^{-}$	E2		ADO=1.38 10.
								%I γ branching=98 24.
								B(E2)=0.0045 20 (2017Ay04).
2969.2 14	27.9 23	2969.4	7/2+	0.0	$3/2^{+}$	Q		R(ADO)=1.29 5.
								$\%$ I γ branching=94 8.
3060.8 18	6.9 28	11700.8	$19/2^{+}$	8639.8	$15/2^{+}$	E2		ADO=1.33 11.
								$\%$ I γ branching=100.
						_		B(E2)=0.0060 24 (2017Ay04).
3754.5 25	0.21 8	5722.0	9/2+	1967.3	5/2+	Q		R(ADO)=1.36 11.

[†] From 2017Ay04. Values of relative intensities quoted here are the original values in 2017Ay04 divided by a factor of 10. %I γ branching ratios deduced by 2017Ay04 from those relative intensities are given under comments.

[‡] From 2017Ay04 based on measured $\gamma\gamma(\theta)$ (ADO), with magnetic or electric nature of transition deduced based on RUL and measured level T_{1/2}, where available. The evaluators have replaced M1 or E1 by mult=D, and E2 by mult=Q where there is no measured level T_{1/2} in 2017Ay04 for supporting magnetic or electric nature assigned by 2017Ay04.

4