History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024				

2009Ch43: E=34 MeV ¹⁸O beam was produced from the 14UD BARC-TIFR Pelletron facility. Target was 1.6 mg/cm² ¹⁸O in the form of Ta₂O₅ prepared by heating a 50 mg/cm² Ta foil in an atmosphere of enriched oxygen. γ rays were detected with an array of seven Compton-suppressed Clover Ge detectors placed at 30°, 60°, 90°, 120° and 150° relative to the beam direction. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO), $\gamma\gamma(\theta,$ lin pol). Deduced levels, J, π , γ -ray multipolarities. Comparisons with truncated (1p-1h) shell-model calculations in the *sdpf* orbital space.

³³S Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	3/2+	
841.1 8	$1/2^{+}$	
1967.6 7	$5/2^{+}$	
2935.9 8	7/2-	
3538.4 <i>13</i>		
3781.0 <i>13</i>	$(9/2^+)$	J^{π} : (5/2 ⁺) in Adopted Levels.
4796.3 16	$(11/2^{-})$	J^{π} : (7/2 ⁺) in Adopted Levels.
4867.1 <i>13</i>		$T_{1/2}$: expected to be much less than 1 ps region, as 1931 γ shows a full Doppler shift (2009Ch43).
5393.3 19		
5990.3 22		

[†] From a least-squares fit to γ -ray energies.

[‡] As proposed in 2009Ch43 based on their $\gamma\gamma(\theta)$ (DCO) and $\gamma\gamma(\text{lin pol})$ data, unless otherwise noted.

$\gamma(^{33}S)$

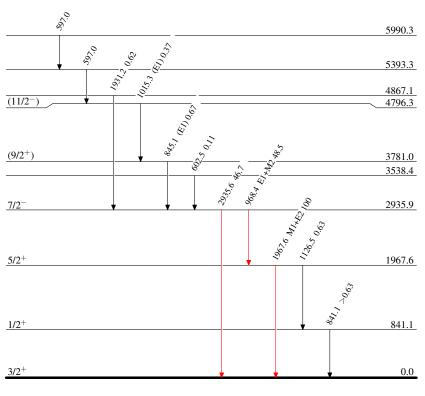
DCO ratio corresponds to angles of 90° and 30° (or 150°). Expected ratios are ≈ 1 for $\Delta J=2$, quadrupole and ≈ 0.5 for $\Delta J=1$, dipole, when gated by $\Delta J=2$, quadrupole transition. Ratios are ≈ 2 for $\Delta J=2$, quadrupole and ≈ 1 for $\Delta J=1$, dipole, when gated on $\Delta J=1$, dipole transition (2009Ch43). Several DCO values are from e-mail reply received from the first author of 2009Ch43 on Sept 14, 2009.

For $\gamma\gamma$ (lin pol) data under comments, a positive value indicates an electric nature and a negative value indicates a magnetic nature (2009Ch43).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
597.0 [@] 10		5393.3		4796.3	$(11/2^{-})$		
597.0 [@] 10		5990.3		5393.3			
602.5 10	0.11 <i>I</i>	3538.4		2935.9	$7/2^{-}$		
841.1 10	>0.63	841.1	$1/2^{+}$	0.0	3/2+		Mult.: (M1+E2) in 2009Ch43 with no supporting data.
845.1 10	0.67 3	3781.0	$(9/2^+)$	2935.9	$7/2^{-}$	(E1) [#]	
968.4 10	48.5 17	2935.9	$7/2^{-}$	1967.6	5/2+	E1+M2	DCO=0.84 14, POL=+0.032 11 gate on 1968γ .
1015.3 10	0.37 2	4796.3	$(11/2^{-})$	3781.0	$(9/2^+)$	(E1) [#]	
1126.5 10	0.63 2	1967.6	$5/2^{+}$	841.1	$1/2^{+}$		Mult.: (E2) in 2009Ch43 with no supporting data.
1931.2 10	0.62 3	4867.1		2935.9	$7/2^{-}$		
1967.6 10	100 <i>3</i>	1967.6	$5/2^{+}$	0.0	$3/2^{+}$	M1+E2	DCO=1.51 25, POL=+0.005 9 gate on 968γ .
2935.6 10	46.7 16	2935.9	7/2-	0.0	3/2+		Mult.: (M2+E3) in 2009Ch43, with no supporting data.

[†] From 2009Ch43.

$^{18}O(^{18}O, 3n\gamma)$ 2009Ch43 (continued)


$\gamma(^{33}S)$ (continued)

[‡] As proposed by 2009Ch43 based on $\gamma\gamma(\theta)$ (DCO) and $\gamma\gamma($ lin pol) data. [#] Multipolarity consistent with qualitative $\gamma\gamma($ lin pol) results (2009Ch43).

[@] Multiply placed.

${}^{18}O({}^{18}O, 3n\gamma)$ 2009Ch43

	Legend
<u>Level Scheme</u> Intensities: Relative I_{γ}	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

 ${}^{33}_{16}S_{17}$