³⁴S(pol d,³He) 1988Kh04

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024

 $J^{\pi}=0^+$ for ³⁴S target.

1988Kh04: E=52 MeV polarized deuteron beam was produced from the Karlsruhe isochronous cyclotron. Target was H₂S gas (89.8% enriched in ³⁴S). Reaction products were detected with 4 Δ E-E telescopes of surface-barrier counters (FWHM=160 keV). Measured ³He spectra, $\sigma(\theta)$, analyzing powers (iT₁₁(θ)) from 10° to 30° (c.m.). Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis of angular distribution and vector analyzing power data. Comparisons with available data.

³³P Levels

Spectroscopic factor is defined as $C^2S=(1.0/N)\times\sigma(\theta)^{exp}/\sigma(\theta)^{DWBA}$, where N is a normalization factor depending on the interaction between the reacting particles.

E(level) [†]	\mathbf{J}^{π}	L‡	C^2S^{\ddagger}	Comments
0	1/2+	0	1.36	E(level): 0 4. L: 2s _{1/2} proton transfer.
1435 6	3/2+ #	2	0.73 [#]	1/2 I
1843 4	5/2+ @	2	1.26	
3250 20	3/2+#	2	0.15 [#]	
3480 12	5/2+ @	2	0.36	
4050 4	5/2+ @	2	1.48	
5050 4	5/2+ @	2	1.91	
5650 6		[2+0]	0.12,0.06 [@]	
5956 12		[2+0]	0.28,0.16 [@]	
6449 26		2	0.42 ^{<i>a</i>}	J^{π} : 5/2 ⁺ given by 1988Kh04 as from this work but no angular distribution or analyzing power plot shown by the authors to support this assignment.
6820 60	5/2+ @	2	0.42	
7146 12	5/2+ @	2	0.60	
7564 <i>34</i>		[1]	<0.40 ^{&}	C^2S : <0.40 for assumed L=1, 1p _{1/2} .
8510 24		[1]	<0.50 ^{&}	$C^2S: <0.50$ for assumed L=1, 1p _{1/2} .

[†] Deduced by 1988Kh04 from analysis of 18 different spectra.

[‡] From DWBA analysis of measured $\sigma(\theta)$ (1988Kh04).

[#] L-1/2 from analyzing power measurement.

[@] L+1/2 from analyzing power measurement.

& $1p_{1/2}$ proton transfer assumed in DWBA calculations.

^{*a*} 1d_{5/2} proton transfer assumed in DWBA calculations.