³⁴S(d,³He) 1984Th08,1968Be13

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024		

 $J^{\pi}=0^+$ for ³⁴S target.

1984Th08: E=30 MeV deuteron beam was produced from the BNL Double MP tandem facility. Targets were 4.4 and 5.0 μ g/cm² sulphur with 18.8% ³⁴S. Reaction products were momentum-analyzed with the BNL Q3D magnetic spectrometer (FWHM \approx 15 keV) and detected with a multi-wire proportional counter backed by a topping plastic scintillator. Measured ³He spectra, $\sigma(\theta)$. Deduced levels, J, π , L-transfers, spectroscopic factors from the DWBA analysis of the angular distributions.

1968Be13: E=23.4 MeV deuteron beam was produced from the Argonne cyclotron. Target was PbS evaporated onto carbon, 35 μ g/cm² and 50% enriched in ³⁴S. Charged particles were detected with a surface-barrier Δ E-E telescope. Measured ³He spectra, $\sigma(\theta)$. Deduced levels, J, π , L-transfers, spectroscopic factors from the DWBA analysis of measured angular distributions. Comparisons with shell-model calculations (1964Gl06). 1968Be13 also report data on ³⁰Si(α ,p).

³³P Levels

Spectroscopic factor is defined as $C^2S=(1.0/N)\times\sigma(\theta)^{exp}/\sigma(\theta)^{DWBA}$, where the N is a normalization factor depending on the interaction between the reacting particles (1984Th08).

E(level) [†]	L‡	C^2S^{\ddagger}	Comments
0	0	2.2	C^2S : $s_{1/2}$ proton transfer assumed in DWBA calculations. Other: 1.8 (1968Be13).
1431.6	2	0.37 [#]	
1847.6	2	1.26 [@]	$C^{2}S$: other: 3.4 for L+1/2 and 5.0 for L-1/2 (1968Be13).
2538.6	2	<0.10 [#]	
3275	2	0.06	
3490	2	0.19@	
3628	4		
4048	2	0.53,0.46 <mark>&</mark>	
5060 10	2	0.39,0.34 ^{&}	

[†] Quoted by 1984Th08 from 1978En02 evaluation, except for the 5060 keV level, which is from their measurement.

[‡] From DWBA analysis of measured $\sigma(\theta)$ in 1984Th08. Uncertainty in C²S is estimated as 50% (1984Th08).

 $^{\#}$ $d_{3/2}$ proton transfer assumed in DWBA calculations.

 $^{@}$ d_{5/2} proton transfer assumed in DWBA calculations.

& Quoted values are for L-1/2 and L+1/2, respectively.