³⁰Si(*α*,**p***γ*) **1975Ni01,1973Ca20,1968Mo16**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024						

1975Ni01: E=13.5 and 17 MeV α beams were produced at the Oliver Lodge Laboratory of the University of Liverpool. Targets were 150 μ g/cm² self-supporting foils of ³⁰Si (>95% enriched). Charged particles were detected with a E- Δ E annular counter telescope and γ rays were detected with five NaI(Tl) crystals and a Ge(Li) detector. Measured E γ , I γ , p γ -coin, p $\gamma(\theta)$, $\gamma(\text{lin pol})$, recoil-distance. Deduced levels, J, π , T_{1/2}, γ -ray branching ratios, transition strengths, and mixing ratios. Comparisons with available data.

1973Ca20: E=7.00-10.00 MeV α beams were produced at the Oliver Lodge Laboratory of the University of Liverpool. Targets were 115 μ g/cm² ³⁰Si and 700 μ g/cm² ³⁰SiO₂ both on Au backings, 95% enriched in ³⁰Si. γ rays were detected with a Ge(Li)-NaI(Tl) escape-suppressed and pair-escape spectrometer. Measured E γ , I γ , $\gamma(\theta)$, Doppler-shift attenuation (DSA). Deduced levels, T_{1/2}.

1968Mo16: E=8 MeV ⁴He beam was produced from the 4-MeV Van de Graaff accelerator of the Duke University. Target was 150 μ g/cm² SiO², 95.5% enriched in ³⁰Si. Protons were detected with a annular surface-barrier detector and γ rays were detected with a NaI(Tl) crystal and a coaxial Ge(Li) detector. Measured E γ , I γ , p γ -coin, p $\gamma(\theta)$. Deduced levels, J, π , γ -ray branching ratios, multipolarities and mixing ratios. Comparisons with available data.

1969Cu01,1967Cu01: E=9.5 MeV α beam was produced from the Harwell Van de Graaff accelerator. Target was highly-enriched ³⁰Si. Protons were detected with a surface-barrier detector and γ rays were detected with a NaI(Tl) or a Ge(Li) detectors. Measured E γ , I γ , p γ -coin, Doppler-shift attenuation (DSA). Deduced levels, T_{1/2}, γ -ray transition strengths.

1969Ha40: E=16.5 MeV α beam was produced from the Argonne accelerator. Target was about 200 μ g/cm² carbon-backed ³⁰Si, 95.55% enriched. Protons were detected with an annular surface-barrier detector and γ rays were detected with two Ge(Li) detectors. Measured E γ , I γ , p γ -coin, p $\gamma(\theta)$. Deduced levels, J, π , γ -ray branching ratios, multipolarities and mixing ratios. See also (α ,p) dataset for proton spectroscopy data from 1969Ha40.

Additional information 1.

³³P Levels

E(level) [†]	J^{π}	T _{1/2} ‡	Comments	
0.0	1/2+		J^{π} : from the Adopted Levels.	
1431.83 20	$3/2^{+}$	0.41 ps 9	J^{π} : 3/2 from 1432 $\gamma(\theta)$ in 1968Mo16 and 1969Ha40.	
			$T_{1/2}$: from τ =596 fs 133, weighted average of 525 fs 133 (1973Ca20) and 790 fs 220 (1969Cu01).	
1847.96 20	$5/2^{+}$	0.89 ps 12	J^{π} : 5/2 from 1850 $\gamma(\theta)$ in 1968Mo16.	
			$T_{1/2}$: from τ =1278 fs 170, weighted average of 1200 fs 300 (1973Ca20) and 1360 fs 170	
			(1969Cu01) by DSAM, and 1200 fs 200 (1975Ni01) by RDM.	
2539.8 5	$3/2^{+}$	<7 fs	J ^{π} : from p-2540 $\gamma(\theta)$ in 1968Mo16; parity from the Adopted Levels.	
			$T_{1/2}$: from $\tau < 10$ fs (1973Ca20).	
3491.84 <i>35</i>	3/2,5/2	30 fs 23	E(level): other: 3489 2 from 1973Ca20.	
			J^{π} : from p-2061 $\gamma(\theta)$ in 1969Ha40.	
			$T_{1/2}$: from τ =43 fs 33 (1973Ca20).	
3628 1	7/2+	111 fs 39	Additional information 2.	
			E(level): from 1973Ca20.	
			J^{π} : from $p\gamma(\theta)$ of 1780 γ and 2196 γ in 1969Ha40; parity from the Adopted Levels.	
			$T_{1/2}$: from τ =160 fs 56 (1973Ca20).	
4226.55 28	7/2-		J^{π} : from the Adopted Levels.	
5453.17 <i>34</i>	9/2-	24 [#] ps 5	J^{π} : from $p\gamma(\theta)$ and $\gamma(lin pol)$ in 1975Ni01.	
		-	$T_{1/2}$: from τ =35 ps 7 (1975Ni01).	
5638.58 34	$11/2^{-}$	9.7 [#] ps <i>14</i>	J^{π} : from $p\gamma(\theta)$ and $\gamma(lin pol)$ in 1975Ni01.	
		*	$T_{1/2}$: from $\tau = 14$ ps 2 (1975Ni01).	

[†] From a least-squares fit to γ -ray energies with uncertainties, unless otherwise noted.

[‡] From DSAM in 1973Ca20 and 1969Cu01, unless otherwise noted. A 25% uncertainty from stopping power quoted by 1973Ca20

³⁰Si(*α*,**p***γ*) **1975Ni01,1973Ca20,1968Mo16** (continued)

³³P Levels (continued)

has been added in quadrature by the evaluators to original uncertainties in 1973Ca20.

[#] From RDM in 1975Ni01.

						$\gamma(^{33}P)$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	Comments
1431.83	3/2+	1431.8 2	100	0.0	1/2+	M1+E2	-0.60 11	E _γ : other: 1435 <i>3</i> (1968Mo16). I _γ : from 1968Mo16. Mult.: D+Q from pγ(θ); E1+M2 ruled out by RUL. δ: weighted average of -0.63 <i>17</i> (1968Mo16) and -0.58 <i>11</i> (1969Ha40)
1847.96	5/2+	416	62	1431.83	3/2+			E_{γ} : reported in 1975Ni01. I_{γ} : from 1968Mo16. Other: 7 (1975Ni01).
		1847.9 2	94 2	0.0	1/2+	E2		\dot{E}_{γ} : others: 1850 <i>3</i> (1968Mo16), 1848 (1975Ni01). I _γ : from 1968Mo16. Other: 93 (1975Ni01). Mult.,δ: δ(O/Q)=-0.06 <i>4</i> or -2.4 <i>3</i> from pγ(θ) in 1968Mo16; O component (E3 or M3) is ruled out by RUL. Other values: -0.09 <i>16</i> or -2.0 <i>15</i> (1969Ha40).
2539.8	3/2+	2539.7 5	100	0.0	1/2+	M1+E2	+0.16 4	E _y : other: 2544 <i>4</i> (1968Mo16). Mult., δ : δ (Q/D)=+0.16 <i>4</i> or -2.6 <i>3</i> from $p\gamma(\theta)$ in 1968Mo16; the larger δ value and E1+M2 are ruled out by RUL based on measured T _{1/2} <7 fs.
3491.84	3/2,5/2	1646 2061	60 <i>15</i> 40 <i>15</i>	1847.96 1431.83	5/2 ⁺ 3/2 ⁺	D+Q		E_{γ},I_{γ} : from 1969Ha40. E_{γ},I_{γ} : from 1969Ha40. Mult., δ : -1.3 <i>3</i> if J=3/2, -0.14 <i>10</i> if J=5/2, from $p_{\gamma}(\theta)$ in 1969Ha40.
3628	7/2+	1780	30 20	1847.96	5/2+	M1+E2	-0.21 10	E_{γ} : from level-energy difference. I_{γ} : from 1969Ha40. Mult., δ : D+Q from py(θ) in 1969Ha40; E1+M2 ruled out by PUL
		2196	70 20	1431.83	3/2+	E2(+M3)	0.0 1	E14:M2 fulled out by KOL. E_{γ} : from difference of level-energies in 1973Ca20. I_{γ} : from 1969Ha40. Mult., δ : Q+O from py(θ) in 1969Ha40; M2+E3 ruled out by RUL.
4226.55	7/2-	734.7 2	11 2 89 2	3491.84 1847 96	3/2,5/2 5/2 ⁺			
5453.17	9/2-	1226.6 2	100	4226.55	7/2-	M1+E2	+0.9 1	A ₂ =+0.79 2; A ₄ =+0.23 2; pol=-0.72 14 (1975Ni01) Mult.,δ: from $p\gamma(\theta)$ and $\gamma(\text{lin pol})$ in 1975Ni01.
5638.58	11/2-	185.4 6 1412.0 2	46 2 54 2	5453.17 4226.55	9/2 ⁻ 7/2 ⁻	[M1] E2		A ₂ =+0.44 3; A ₄ =-0.13 3; pol=+0.79 20 (1975Ni01) Mult.: from $p\gamma(\theta)$ and $\gamma(lin pol)$ in 1975Ni01.

[†] From 1973Ca20 for E γ and 1968Mo16 for I γ up to 3628 level and from 1975Ni01 above that, unless otherwise noted. 1973Ca20 and 1968Mo16 did not list the γ -ray energies which had been used to deduce the excitation energies in the paper. The evaluators deduced γ -ray energies of transitions to g.s. from the given level energies.

30 Si(α ,p γ) 1975Ni01,1973Ca20,1968Mo16

Level Scheme

Intensities: % photon branching from each level

 $^{33}_{15}P_{18}$