Adopted Levels:not observed

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024

 $Q(\beta^{-})=22350 \text{ syst}; S(n)=-1060 \text{ syst}; S(p)=27390 \text{ calc}; Q(\alpha)=-21690 \text{ calc}$ 2021Wa16,2019Mo01 $\Delta Q(\beta^{-})=750, \Delta S(n)=780 \text{ (syst,2021Wa16)}.$

 $Q(\beta^{-})$ and S(n) from 2021Wa16. S(p) and $Q(\alpha)$ are theoretical values from 2019Mo01.

 $S(2n)=1190\ 660,\ Q(\beta^{-}n)=19420\ 600\ (syst, 2021Wa16).\ S(2p)=51460\ (2019Mo01,\ theory).$

2002No11, 1997Sa14: ³³Ne not seen in reaction: Ta(⁴⁸Ca,X) E=64 MeV/nucleon. Reaction fragments analyzed by RIPS recoil fragment separator at RIKEN facility. Identification by measurements of energy loss, total kinetic energy, time-of-flight and magnetic rigidity for each fragment. Expected cross section for ³³Ne, based on measured cross sections for ³¹F and ³⁵Na, is \approx 10 pb. This cross section should result in the observation of some events for ³³Ne but none were seen.

2002Lu09, 2002Lu19: RIKEN-GANIL-Dubna collaboration. ³³Ne not seen in reaction: Ta(⁴⁸Ca,X) E=59.8 MeV/nucleon. Fragmentation of ⁴⁸Ca primary beam. Reaction fragments analyzed by RIPS recoil fragment separator at RIKEN facility and LISE-2000 spectrometer at GANIL. Isotopic Identification by measurements of energy loss, total kinetic energy, time-of-flight and magnetic rigidity for each fragment. No events were observed for ³³Ne.

2007Ba71: W(⁴⁸Ca,X γ) E=141 MeV/nucleon beam from the National Superconducting Cyclotron Laboratory (NSCL). The fragments were separated with the A1900 fragment separator. Isotopic identification by multiple Δ E signals, magnetic rigidity, total energy and time of flight analysis. Detectors: plastic scintillators, parallel-plate avalanche counters (PPACs) and silicon PIN diodes. No events could be assigned to ³³Ne which confirmed this nucleus is unbound towards particle emission. The ³⁴Ne nuclide is observed in this work as bound nucleus. The ³³Ne nuclide should probably have been seen also if this were a bound nucleus.

Structure calculations:

2022Gu11: calculated single-particle levels.

2022Su17, 2021In02, 2008Wi11, 2005Ch71, 2004Ge02: calculated binding energies, deformation parameter. 2020Mi15: calculated energy of first 2⁺ level and B(E2).

Additional information 1.

³³Ne Levels

E(level)	T _{1/2}	Comments
0?	<180 ns	 %n=? ³³Ne g.s. is unbound towards neutron emission, according to non-observation of any events which could be assigned to ³³Ne in the experimental studies by 2007Ba71, 2002Lu09, and 2002No11 carried out at RIKEN, RIKEN-GANIL-Dubna collaboration, and NSCL-MSU. Most likely this nucleus is unbound
		kTKEN, KTKEN-GANIL-Dubna collaboration, and NSCL-MSU. Most likely this nucleus is unbound towards one-neutron emission, as S(n) is -1060 keV 780 (syst), and S(2n)=1190 660 (syst) (2021Wa16). J ^π : predicted values: $3/2^-$ (theory, 2019Mo01), $7/2^-$ (syst, 2021Ko07). T _{1/2} : <180 ns estimated from time-of-flight in 2007Ba71. Theoretical T _{1/2} (β decay)=5.9 ms (2019Mo01), 5.7 ms (2021Mi17).

³³₁₀Ne₂₃