Adopted Levels, Gammas

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024

 $Q(\beta^{-})=1.882\times 10^{4} 45$; $S(n)=2.93\times 10^{3} 45$; S(p)=20510 syst; $Q(\alpha)=-1.879\times 10^{4} 69$ 2021Wa16 $\Delta S(p) = 680 \text{ (syst, 2021Wa16)}.$

 $S(2n)=4610\ 450,\ S(2p)=47640\ 700\ (syst),\ Q(\beta^{-}n)=16540\ 450\ (2021Wa16).\ Q(\beta^{-}2n)=10760\ 450,\ Q(\beta^{-}3n)=8450\ 450,\ S(2n)=10760\ 450\$ $Q(\beta^{-}4n)=2110$ 450, deduced by the evaluators from relevant masses in 2021Wa16.

1972K104: first identification and production of 32 Na nuclide in U(p,X) reaction at E=24 GeV, CERN-ISOLDE facility. Measured isotopic half-life. Later publications from the same laboratory dealing with spectroscopic measurements: 1978De39, 1984Gu19. Mass measurements: 2012Ga45, 2007Ju03, 1991Or01.

Measurement of mean square radii using ³³Na beam: 2006Kh08.

Production and cross section measurements: 1979We10, 1991Or01, 1997Ha11, 1998NoZW (also 1998NoZZ, 1999YoZW), 2002Ra16 (also 2004Co29).

Structure calculations:

2022Ot01: calculated nuclear moments.

2020Ts03.2014Ca21: calculated levels, J. π .

1994Po05: calculated levels, binding energies.

Additional information 1.

³³Ne is particle unstable thus does not decay by β^- to ³³Na. ³⁴Ne possibly decays by delayed-neutron decay to ³³Na but no details are known about this mode. The ³⁵Ne nuclide which could possibly decay by delayed-two neutron decay to ³³Na has not been identified.

This nuclide is of possible relevance to "island of inversion" near N=20.

³³Na Levels

Cross Reference (XREF) Flags

9 Be(³⁸ Si, ³³]	Nay)
--	------

 $^{12}C(^{34}Na,^{33}Na\gamma)$ $C(^{36}Mg,^{33}Na\gamma)$ В

С

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0#	(3/2+)	8.1 ms <i>3</i>	ABC	eq:sphere:sph
427 [#] 5	(5/2+)		ABC	XREF: B(467). J ^{π} : systematics of odd-A Na nuclides; 5/2 ⁺ from shell-model predictions in 2011Ga15 and 2014Do05.
1115 [#] 8	$(7/2^+)$		A C	For a possible 1117-keV transition to the g.s., branching ratio is calculated as 4.2%

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

³³Na Levels (continued)

E(level) [†]	J ^π ‡	XREF	Comments
			(2011Ga15), too weak to be seen in the work of 2011Ga15.
1875 [#] 15	$(9/2^+)$	С	

[†] From $E\gamma$ data.

[‡] From shell-Model calculations using the SPDF-M effective interaction (2014Do05, 2011Ga15), unless otherwise noted.

[#] Band(A): Possible $K^{\pi} = (3/2^+)$ band. $K^{\pi} = 3/2^+$ rotational band predicted in shell-model calculations (2011Ga15, 2014Do05).

$\gamma(^{33}Na)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Comments
427	(5/2 ⁺)	427 5	0	(3/2+)	E_{γ} : weighted average of 429 5 from (³⁸ Si, ³³ Na γ) and 425 5 from (³⁶ Mg, ³³ Na γ). Other: 467 <i>13</i> from (³⁴ Na, ³³ Na γ) seems discrepant.
1115	$(7/2^+)$	688 6	427	$(5/2^+)$	E_{γ} : other: 690 <i>13</i> from (³⁶ Mg, ³³ Na γ) is in agreement with the adopted values, but less precise
1875	$(9/2^+)$	760 13	1115	$(7/2^+)$	

[†] From ${}^{9}Be({}^{38}Si,{}^{33}Na\gamma)$.

Adopted Levels, Gammas

Level Scheme

Adopted Levels, Gammas

