⁹Be(³⁸Si,³³Naγ) 2011Ga15

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024				

2011Ga15: E=83 MeV/nucleon ³⁸Si beam produced by fragmentation of 140 MeV/nucleon ⁴⁸Ca primary beam delivered by the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory (NSCL) onto a 752 mg/cm² ⁹Be fragmentation target. Isotope of interest selected in the A1900 fragment separator and detected in the focal plane of the S800 spectrograph. A 32-fold segmented high-purity Ge detector array (SeGA) was used for detecting γ rays. Measured E γ . Deduced levels. Calculated transition strengths. Comparison with shell model calculations.

³³Na Levels

E(level) [†]	Jπ‡	Comments		
0#	$(3/2^+)$			
429 <mark>#</mark> 5	$(5/2^+)$			
1117 [#] 8	(7/2 ⁺)	For a possible 1117-keV transition to the g.s., branching ratio is calculated as 4.2% (2011GaZZ), which is too weak to be seen in the current work.		

[†] From $E\gamma$ values.

[‡] From Monte-Carlo shell-model calculations using the SPDF-M effective interaction.

[#] Band(A): $K^{\pi}=3/2^+$ band. Rotational band predicted by shell-model calculations.

$\gamma(^{33}\text{Na})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
429 5	429	$(5/2^+)$	0	$(3/2^+)$
688 6	1117	$(7/2^+)$	429	$(5/2^+)$

[†] From 2011Ga15.

⁹Be(³⁸Si,³³Naγ) 2011Ga15

Level Scheme

 $^{33}_{11}Na_{22}$

⁹Be(³⁸Si,³³Naγ) 2011Ga15

³³₁₁Na₂₂