³³Na β^- decay (8.1 ms) 2001Nu02,1984Gu19

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024				

Parent: ³³Na: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=8.1$ ms 3; $Q(\beta^-)=18.82\times10^3$ 45; $\%\beta^-$ decay=100

³³Na-Q(β^{-}): from 2021Wa16.

 33 Na-J^{π},T_{1/2}: From the Adopted Levels of 33 Na.

 33 Na- $\%\beta^-$ decay: $\%\beta^-$ n=47 6, $\%\beta^-$ 2n=13 3 (2001Nu02,2002Ra16).

2001Nu02, 2002Ra16 (also 2002Nu02,2004Co29): ³³Na source was produced in fragmentation reactions by 1.4 GeV protons from the PS/Booster at CERN impinging on a uranium-carbide target. Fragments were ionized, accelerated and mass separated by the ISOLDE facility, and then transported to the experimental setup. γ rays were detected with two large-volume Ge detectors; β particles were detected with a thin plastic scintillator detector; β -delayed neutrons were detected with eight low-threshold neutron detectors. Measured E γ , I γ , E β , I β , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, $\beta\gamma\gamma$ -coin, $\beta\gamma\gamma$ -coin, $\beta(\tau)$, $\gamma(t)$, $\beta(t)$. Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*, β -delayed neutron emission probabilities. Comparisons with shell-model calculations.

1984Gu19: Na isotopes were produced in the fragmentation of a 30 g/cm² iridium target by 10 GeV protons from CERN synchrotron. γ rays were detected with two Ge(Li) detectors and β particles were detected with a thin 2π plastic scintillator. Measured E γ , I γ , E β , I β , $\gamma\gamma$ -coin, $\beta\gamma\gamma$ -coin. Four unplaced γ rays reported.

1984La03: similar setup as that in 1984Gu19, plus a 4π liquid-scintillator neutron detector. Measured β -delayed neutrons. Deduced parent T_{1/2}, β -delayed neutron emission probabilities.

1998NoZW: ³³Na source was produced by fragmentation of a 95 MeV/nucleon ⁴⁰Ar beam from the RIKEN Ring Cyclotron and separated by the RIPS separator. β particles were detected with silicon detectors. Measured $\beta(t)$. Deduced parent T_{1/2}.

 ^{33}Na also decays to ^{31}Mg by $\beta^-2n~(13\%~3)$ and to ^{32}Mg by $\beta^-n~(47\%~6)~(2001Nu02).$

All data are from 2001Nu02, unless otherwise stated.

The data on neutron energies are not available in detail to deduce all the level energies in ³³Mg populated by ³³Na β decay. Several γ rays are unplaced and there still could be unobserved transitions in the large energy gap allowed by the Q(β^-) value, indicating that the level scheme is incomplete.

³³Mg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2-	90.3 ms 10	J^{π} : 2001Nu02 proposed (3/2) ⁺ .
			$T_{1/2}$: from the Adopted Levels.
158.8? 5			E(level): 2001Nu02 proposed a level at 158 keV with $J^{\pi} = (7/2^{-})$ from tentative placement of 546 γ from 705 level to a 158 level, but no γ decay from this level was reported. The 546.2 γ is now placed from a level of this energy, thus the existence of 158 level is suspect and it has been omitted in Adopted Levels.
484.11 8	$(5/2^{-})$		J^{π} : 2001Nu02 proposed (3/2) ⁻ .
546.21 10	$(3/2^{-})$		
705.01 8	$(3/2, 5/2^+)$		J^{π} : 2001Nu02 proposed (5/2 ⁺).
1242.42 11	$(1/2^-, 3/2^-)$		J^{π} : 2001Nu02 proposed (1/2 ⁺).
3780 [#]			E(level): from neutron group at 800 60 keV.
4000 [#]			E(level): from neutron group at 1020 80 keV.
2280+x			E(level): x<16540 450 from Q(β^{-})(³³ Na)-S(n)(³³ Mg), where Q(β^{-})=18820 450 and S(n)=2280 4 from 2021Wa16. This represents a range of unobserved levels that subsequently decay to ³² Mg via one-neutron emission, including 3780 and 4000 levels above.
8058+y			E(level): y<10760 450 from Q(β^{-})(³³ Na)-S(2n)(³³ Mg), where S(2n)=8058 4 from 2021Wa16. This represents a range of unobserved levels that subsequently decay to ³¹ Mg via two-neutron emission.

[†] From a least-squares fit to γ -ray energies, unless otherwise noted.

[‡] From the Adopted Levels.

[#] Decays to ${}^{32}Mg$ by neutron emission.

33 Na β^- decay (8.1 ms) 2001Nu02,1984Gu19 (continued)

β^- radiations

E(decay)	E(level)	Ιβ ^{-‡}	Log ft	Comments
$\frac{E(decay)}{(5\times10^{3} \ @ 5)} \\ (8\times10^{3} \ @ 8) \\ (1.76\times10^{4} \ 5) \\ (1.81\times10^{4} \ 5) \\ (1.83\times10^{4} \ 5) \\ (1.88\times10^{4} $	E(level) 8058+y 2280+x 1242.42 705.01 546.21 484.11 0.0	$ \begin{array}{r} I\beta^{-\ddagger} \\ 13 \ 3 \\ 47 \ 6 \\ 2.9^{\dagger} \ 12 \\ 7.0^{\dagger} \ 26 \\ 8.8^{\dagger} \ 33 \\ <1.5^{\dagger} \\ 20 \ 10 \\ \end{array} $	$ \begin{array}{c} Log ft \\ 5.8^{\dagger} \\ 5.5^{\dagger} \\ 5.4^{\dagger} \\ > 6.2^{\dagger} \\ 5.0 \\ \end{array} $	Comments Iβ ⁻ : from adopted %β ⁻ 2n=13 <i>3</i> for the decay of ³³ Na g.s. (2001Nu02,2002Ra16). Iβ ⁻ : from adopted %β ⁻ n=47 <i>6</i> for the decay of ³³ Na g.s. (2001Nu02,2002Ra16). av Eβ=8.45×10 ³ 22 av Eβ=8.71×10 ³ 22 av Eβ=8.79×10 ³ 22 av Eβ=8.83×10 ³ 22 av Eβ=9.06×10 ³ 22 Iβ ⁻ ,Log <i>ft</i> : branching ratio is from 100–%β ⁻ n-%β ⁻ 2n-ΣI(γ to g.s.) and considered as upper limit and log <i>ft</i> as lower limit, due to possible unobserved γ transitions and levels. Parent J^{π} =(3/2 ⁺) of ³³ Na indicates a forbidden decay to this 3/2 ⁻ g.s. in ³³ Mg, which would expect a much higher log <i>ft</i> value than 5.1 quoted here. This supports that there are unobserved feedings and the deduced g.s. feeding of 20 <i>10</i> might be attributed mostly to them. Due to the forbidden nature and possible unobserved feedings, the evaluators consider this decay branch with a large feeding questionable.

[†] β branching ratios are from γ -ray intensity imbalance and considered by the evaluators as upper limits due to possible unobserved transitions and associated log *ft* values as lower limits.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

[@] Estimated for a range of levels.

 $\gamma(^{33}Mg)$

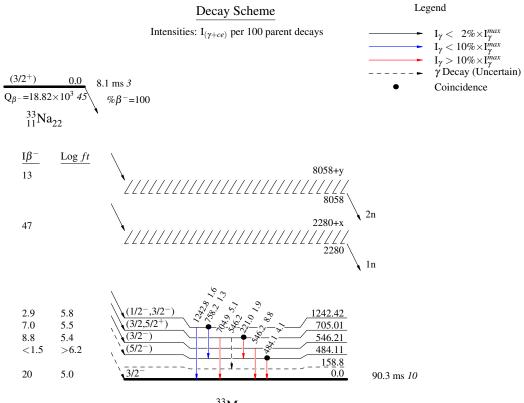
I γ normalization: Deduced by 2001Nu02 from absolute γ -intensity measurements using the activity of well-known ²⁶Na as standard, simultaneous detection of β and γ rays, and efficiencies of β - and γ -detectors.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
221.0 <i>I</i>	8.7 10	705.01	(3/2,5/2+)	484.11	(5/2 ⁻)	%I γ =1.9 7 E $_{\gamma}$,I $_{\gamma}$: doublet. The second component is assigned to a transition in ³¹ Mg populated by ³³ Na β ⁻ 2n decay.
^x 297.9 [‡] 1	4.0 4	40.4.1.1	(5/2-)	0.0	2/2-	%Iy=0.88 <i>33</i>
484.1 <i>1</i>	18.7 <i>19</i>	484.11	$(5/2^{-})$	0.0	3/2-	$\%$ I γ =4.1 <i>16</i> Other: E γ =484.9 <i>10</i> , I γ =14 <i>11</i> (1984Gu19).
546.2 1	40 4	546.21	(3/2-)	0.0	3/2-	%Iγ=8.8 33 2001Nu02 considered different scenarios for the placement of 546y and proposed placement from 705 level to a 159 level as the probable one, which is also adopted by 2021Ba28 in ⁹ Be(³⁴ Mg, ³³ Mgγ) without further supporting evidence. However, this γ could also define a level of this energy, a possibility which 2001Nu02 considered less likely based on rather weak arguments. 2006E103 observed a 561 <i>17</i> γ in ¹ H(³⁴ Mg, ³³ Mgγ), which they suggested was most likely the same as 546.2 γ in decay work, but no 704.9 γ was seen in that study, which may imply that 546.2 γ and 704.9 γ de-excite different levels. Moreover, the non-observation of this 546 γ and observations of 220 γ and 703 γ from 703 level

$^{33}\mathrm{Na}\,\beta^-$ decay (8.1 ms) 2001Nu02,1984Gu19 (continued)

$\gamma(^{33}Mg)$ (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E _i (level)	J_i^π	E_f	J_f^π	Comments
						by 2017Ri06 in ${}^{9}\text{Be}({}^{46}\text{Ar}, {}^{33}\text{Mg}\gamma)$, and the observations of all those three transitions by 2021Ba28 with 546 γ much stronger than 703 γ further support that 546 γ and 703 γ deexcite different levels. Therefore a level at 546.2 keV has been defined in Adopted Levels by the evaluators and is also adopted here and the placement from 705 level is considered as questionable. Other: E γ =546.5 <i>10</i> , I γ =40 <i>13</i> (1984Gu19).
546.2 [@]		705.01	(3/2,5/2 ⁺)	158.8?		E_{γ} : tentative placement (2001Nu02), but the evaluators suggest that the main placement is from 546 level. See comments at 546.2 γ from 546 level.
704.9 <i>1</i>	23.2 21	705.01	$(3/2, 5/2^+)$	0.0	3/2-	$\%$ I γ =5.1 19 Other: E γ =704.3 10, I γ =23 11 (1984Gu19).
758.2 1	6.1 7	1242.42	(1/2-,3/2-)	484.11	(5/2-)	%Ιγ=1.3 5
^x 845.7 [‡] 2	2.5 4					%Iγ=0.55 22
$x_{1011.3}^{\ddagger} 2$	1.6 4					%Iγ=0.35 <i>16</i>
1242.8 2	7.1 19	1242.42	$(1/2^-, 3/2^-)$	0.0	3/2-	$\%1\gamma = 1.67$
^x 1857.7 [‡] 4 ^x 1976.9 5 ^x 2236.9 5	4.1 6 6.7 <i>19</i> 7.0 <i>9</i>					Other: $E\gamma = 1242.6 \ 18$, $I\gamma = 26 \ 10 \ (1984Gu19)$. % $I\gamma = 0.9 \ 4$ % $I\gamma = 1.5 \ 7$ % $I\gamma = 1.5 \ 6$


[†] From 2001Nu02. Intensities are relative to 100 for 885.3 γ in ³²Mg populated in β ⁻n decay of ³³Na.

[‡] The evaluators note that 1857.7-1011.3=846.4, which matches the gamma energy of 845.7 2 within the uncertainty range and may suggest a level at 1011.3+845.7=1856 and another level either at 1011 or 846. Also, 845.7-297.9=547.8 which is close in energy to 546.2γ.

For absolute intensity per 100 decays, multiply by 0.22 8.
 @ Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

³³Na β^- decay (8.1 ms) 2001Nu02,1984Gu19

 $^{33}_{12}Mg_{21}$