33 Na β⁻ decay (8.0 ms) 2001Nu02,1984Gu19 | History | , | |---------|---| | HISTORY | J | | | | | Type | Author | Citation | Literature Cutoff Date | | |-----------------|---------------------------|----------------------|------------------------|--| | Full Evaluation | Jun Chen and Balraj Singh | NDS 112, 1393 (2011) | 31-Mar-2011 | | Parent: 33 Na: E=0.0; J^{π} =(3/2+); $T_{1/2}$ =8.0 ms 4; $Q(\beta^{-})$ =19.94×10³ 88; $\%\beta^{-}$ decay=100.0 2001Nu02, 2002Ra16 (also 2002Nu02,2004Co29): Measured E γ , I γ , half-life, $\gamma\gamma$, $\beta\gamma$ coin, $\beta\gamma\gamma$ coin, $\beta\eta\gamma$ coin, n γ coin, delayed neutrons, ISOLDE facility. Shell-model calculations. 1984Gu19: Four unplaced γ rays reported. Other 2006AnZW: 33 Mg produced in fragmentation of 36 S beam at GANIL facility, measured γ and delayed neutrons from its decay. ³³Na also decays to ³¹Mg by β ⁻2n (13% 3) and to ³²Mg by β ⁻n (47% 6); total. All data are from 2001Nu02, unless otherwise stated. The data on neutron energies are not available in detail to deduce all the level energies in 33 Mg populated by 33 Na β decay. Several γ rays are unplaced and there still could be unobserved transitions in the large energy gap allowed by the Q(β ⁻) value. #### ³³Mg Levels | E(level) | J^π^{\dagger} | Comments | |-------------------|-----------------------|---| | 0 | 3/2- | | | 158.8? | | E(level): 2001Nu02 propose a level at 158 keV with J^{π} =(7/2 ⁻) from tentative placement of 546 γ from 705 level to a 158 level, but no γ decay from this level was reported. The 546.2 γ is now placed from a level of this energy, thus the existence of 158 level is suspect and it has been omitted in Adopted Levels. | | 484.1 <i>I</i> | $(3/2^{-})$ | · | | 546.2 <i>1</i> | | | | 705.0 <i>1</i> | $(1/2^+,3/2^+,5/2^+)$ | J^{π} : 2001Nu02 propose (5/2 ⁺). | | 1242.4 <i>I</i> | $(1/2^+, 3/2, 5/2)$ | J^{π} : 2001Nu02 propose (1/2 ⁺). | | 3780 [‡] | | E(level): from neutron group at 800 60 keV. | | 4000 [‡] | | E(level): from neutron group at 1020 80 keV. | [†] From Adopted Levels. #### β^- radiations | E(decay) | E(level) | $I\beta^{-\dagger\ddagger}$ | $\text{Log } ft^{\dagger}$ | Comments | |----------------------------------|----------|-----------------------------|----------------------------|---------------------------------------| | $(1.87 \times 10^4 \ 9)$ | 1242.4 | 2.9 12 | 6.0 | av E β =9.04×10 ³ 44 | | $(1.92 \times 10^4 \ 9)$ | 705.0 | 7 3 | 5.6 | av E β =9.30×10 ³ 44 | | $(1.94 \times 10^4 \ 9)$ | 546.2 | 9 4 | 5.5 | | | $(1.95 \times 10^{4} ^{4} ^{9})$ | 484.1 | <1.2 | >6.4 | av E β =9.41×10 ³ 44 | | $(1.99 \times 10^4 \ 9)$ | 0 | 20 10 | 5.2 | av E β =9.65×10 ³ 44 | [†] The evaluators consider the level scheme as incomplete and tentative, thus all β branches are considered as upper limits and associated log ft values as lower limits. ³³Na-Q(β^-): from 2009AuZZ. Other: 20.00×10³ 88 (2003Au03). ³³Na-T_{1/2}: from timing of β , delayed neutrons and γ rays (2001Nu02). Other: 8.4 ms 4 (1984Gu19). ³³Na-J^π: From systematics of odd-Na nuclides (2002Ra16), 3/2⁺ is favored. Shell-model calculations by 2001Nu02 predict 3/2⁺ and 5/2⁺ within 60 keV; and those of 2011GaZZ 3/2⁺. ³³Na- $\%\beta^-$ decay: $\%\beta^-$ n=47 6, $\%\beta^-$ 2n=13 3 (2001Nu02). [‡] Decays to ³²Mg by neutron emission. [‡] Absolute intensity per 100 decays. [#] Existence of this branch is questionable. #### ³³Na β⁻ decay (8.0 ms) 2001Nu02,1984Gu19 (continued) ### $\gamma(^{33}\text{Mg})$ Iy normalization: from absolute γ -intensity measurements (2001Nu02) using the activity of well-known ²⁶Na as standard, simultaneous detection of β and γ rays, and efficiencies of β - and γ -detectors. | E_{γ} | I_{γ} †# | $E_i(level)$ | \mathtt{J}_i^{π} | \mathbf{E}_f | \mathbf{J}_f^{π} | Comments | |------------------------------------|-----------------|--------------|-----------------------|----------------|----------------------|---| | 221.0 <i>I</i> | 8.7 10 | 705.0 | $(1/2^+,3/2^+,5/2^+)$ | 484.1 | (3/2 ⁻) | E_{γ} , I_{γ} : doublet. The second component is assigned to a transition in ³¹ Mg populated by ³³ Na β ⁻² n decay. | | ^x 297.9 [‡] 1 | 4.0 4 | | | | | | | 484.1 <i>I</i> | 18.7 <i>19</i> | 484.1 | $(3/2^{-})$ | 0 | $3/2^{-}$ | $E\gamma = 484.9 \ 10, I\gamma = 14 \ 11 \ (1984Gu19).$ | | 546.2 1 | 40 4 | 546.2 | | 0 | 3/2- | 2001Nu02 considered different scenarios for the placement of 546γ and proposed placement from 705 level to a 159 level as the probable one. However, this γ could also define a level of this energy, a possibility which 2001Nu02 considered less likely based on rather weak arguments. 2006El03 observed a 561 <i>17</i> γ in ¹ H(³⁴ Mg, ³³ Mgγ), which they suggested was most likely the same as 546.2γ in decay work, but no 704.9γ was seen in this study, which may imply that 546.2γ and 704.9γ de-excite different levels. In Adopted Levels, Gammas, the evaluators have defined a level at 546.2 keV. Eγ=546.5 <i>10</i> , Iγ=40 <i>13</i> (1984Gu19). | | 546.2 [@] | | 705.0 | (1/2+,3/2+,5/2+) | 158.8? | | E _γ : tentative placement (2001Nu02), but the evaluators suggest that the main placement is from 546 level based on the observation of a 546γ in ${}^{1}\text{H}({}^{34}\text{Mg}, {}^{33}\text{Mg}\gamma)$ (2006El03) but not the 704.9γ. | | 704.9 <i>1</i> | 23.2 21 | 705.0 | $(1/2^+,3/2^+,5/2^+)$ | 0 | $3/2^{-}$ | $E\gamma = 704.3 \ 10, \ I\gamma = 23 \ 11 \ (1984 Gu 19).$ | | 758.2 <i>1</i> | 6.1 7 | 1242.4 | $(1/2^+,3/2,5/2)$ | 484.1 | $(3/2^{-})$ | | | ^x 845.7 [‡] 2 | 2.5 4 | | | | | | | ^x 1011.3 [‡] 2 | 1.6 4 | | | | | | | 1242.8 2 | 7.1 19 | 1242.4 | $(1/2^+, 3/2, 5/2)$ | 0 | 3/2- | $E\gamma = 1242.6 \ 18, I\gamma = 26 \ 10 \ (1984Gu19).$ | | ^x 1857.7 [‡] 4 | 4.1 6 | | (1,2,0,2,0,2) | O | -, - | 2, 12.2.0 10, 1, 20 10 (1001001). | | x1976.9 5 | 6.7 19 | | | | | | | ^x 2236.9 5 | 7.0 9 | | | | | | [†] Relative to 100 for 885.3 γ in ³²Mg populated in β ⁻n decay of ³³Na. [‡] The evaluators note that 1857.7-1011.3=846.4, which matches the gamma energy of 845.7 2 keV within the uncertainty range and may suggest a level at 1011.3+845.7=1856 and another level either at 1011 or 846. The evaluators tentatively define a level at 1856.7 keV. Also 845.7-297.9=547.8 which is close in energy to 546.2γ. [#] For absolute intensity per 100 decays, multiply by 0.22 8. [®] Placement of transition in the level scheme is uncertain. $^{^{}x}$ γ ray not placed in level scheme. # 33 Na β^- decay (8.0 ms) 2001Nu02,1984Gu19 ## Legend Decay Scheme $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \operatorname{Decay} \left(\operatorname{Uncertain} \right) \end{array}$ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays $Q_{\beta^{-}=19.94\times10^{3}} = \frac{0.0}{8.0 \text{ ms } 4}$ Coincidence $\%\beta^{-}=100$ $^{33}_{11}{\rm Na}_{22}$ $\underline{I\beta^-}$ 2.9 $(1/2^+, 3/2, 5/2)$ 1242.4 $(1/2^+, 3/2^+, 5/2^+)$ 5.6 705.0 5.5 546.2 < 1.2 >6.4 484.1 _1<u>58.8</u> $^{33}_{12}{\rm Mg}_{21}$ 20 5.2