History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024				

Adapted from a dataset in the XUNDL database compiled from 2021Ba28 by S. Zhu (NNDC, BNL), August 09, 2021.

2021Ba28: E=242.5 MeV/nucleon ³⁴Mg and 229.6 MeV/nucleon ³⁴Al beams were produced by fragmentation of a 345 MeV/nucleon ⁴⁸Ca primary beam from RIBF at RIKEN, on a 15-mm-thick ⁹Be production target. Fragments were separated by the BigRIPS fragment separator. The secondary target was 1032 mg/cm² ⁹Be. γ rays were detected by the DALI2 array of NaI(Tl) detectors and reaction residues were detected and analyzed by the ZeroDegree spectrometer (ZDS). Measured E γ , I γ , parallel momentum distributions, inclusive and partial cross sections. Deduced levels, J, π . Comparison with shell-model calculations using IMSRG-derived interaction with an ²⁰O core, and effective interactions of SDPF- μ , SDPF-U-Si and SDPF-U-MIX with an ¹⁶O core in *sdpf* model space.

³³Mg Levels

Cross-section data under comments are for one-neutron knockout reaction ${}^{9}Be({}^{34}Mg, {}^{33}Mg\gamma)$ in 2021Ba28.

E(level) [†]	$J^{\pi #}$	L [‡]	Comments		
0	3/2-	1	Inclusive σ =93 mb 2, partial σ =27 mb 4 (one-proton knock out); inclusive σ =3.1 mb 2 (one-neutron knock out).		
154? 9	7/2-	3	This is a speculative isomeric state, as proposed by 2021Ba28 based on the hypothetical placement of 549γ from 703 level. No decay associated with this level is observed. The reported partial σ =18 mb 4 is from intensity of 549γ and transferred L=3 is from a fit to measured momentum distribution assuming a L=3 component. This level is considered uncertain by the evaluators due to the questionable placement of 549γ from 703 level. See comments for 549γ .		
484 5	$(3/2^+, 5/2^+)$	(2)	Partial $\sigma < 3 \text{ mb } l$.		
703 6	(3/2)-	1	Partial σ >20 mb 3. But it is also stated in 2021Ba28 that both p-wave (L=1) and d-wave (L=2) components are present. 2021Ba28 attribute the L=2 component most likely to cross-contamination from the 779-keV d-wave component, which the evaluators consider is a rather weak argument to rule out L=2 and adopt L=1 for 703 level. The evaluators consider the shape of $\gamma(\theta)$ distribution as ambiguous with L=(1,2), as also stated in 2021Ba28.		
779 7	$(3/2, 5/2)^+$	2	Partial σ =21 mb <i>I</i> .		
1258 15	$(1/2, 3/2^{-})$	0,1	Partial σ =1.3 mb 5.		
1850 40	$(1/2, 3/2^{-})$	0,1	Partial σ =0.7 mb 5.		

[†] From a least-squares fit to γ -ray energies.

[‡] From Table I in 2021Ba28, based on gated momentum distributions, and fits to the inclusive momentum distributions.

[#] Proposed in 2021Ba28, based on measured parallel momentum distributions and theoretical predictions.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	${ m J}_f^\pi$	Comments
219 8	10.1	703	$(3/2)^{-}$	484	$(3/2^+, 5/2^+)$	
295 7	19 <i>I</i>	779	$(3/2,5/2)^+$	484	$(3/2^+, 5/2^+)$	
484 6	23 1	484	$(3/2^+, 5/2^+)$	0	3/2-	
549 [‡] 7	15 <i>1</i>	703	(3/2) ⁻	154?	7/2-	Placement of this γ is adopted by 2021Ba28 from the hypothesis of 2001Nu02 in ³³ Na β^- decay, who considered different scenarios for the placement of 546 γ and proposed the placement

 $\gamma(^{33}Mg)$

of 2001Nu02 in ³³Na β^- decay, who considered different scenarios for the placement of 546 γ and proposed the placement from 705 level to a 159 level as the probable one and the placement from a 546 level as less likely based on rather weak arguments. 2006E103 observed a 561 *17* γ in ¹H(³⁴Mg,³³Mg γ),

Continued on next page (footnotes at end of table)

			⁹ I	Be (³⁴ M	$(34)^{33}$ Mg γ), $(34)^{34}$	Al , ³³ Mgγ) 2021Ba28 (continued)
$\gamma(^{33}\text{Mg})$ (continued)						
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
703 8	7.2	703	(3/2)-	0	3/2-	which they suggested was most likely the same as 546.2γ in decay work, but no 704.9γ was seen in that study, which may imply that 546.2γ and 704.9γ de-excite different levels. Moreover, the non-observation of this 546γ and observations of 220γ and 703γ from 703 level by 2017Ri06 in $^{9}\text{Be}(^{46}\text{Ar},^{33}\text{Mg}\gamma)$, and the observations of all those three transitions by 2021Ba28 with 546γ much stronger than 703γ further support that 546γ and 703γ deexcite different levels. Therefore a level at 546.2 keV has been defined in Adopted Levels by the evaluators and the placement from 705 level is considered as questionable.
703 8 779 <i>12</i>	41	703 779	(3/2) $(3/2,5/2)^+$	0	$3/2^{-}$	
780 [‡]		1258	(1/2,3/2 ⁻)	484	(3/2 ⁺ ,5/2 ⁺)	E_{γ} : seen in the coincidence spectrum with 484 γ in (³⁴ Mg, ³³ Mg γ), but not in (³⁴ Al, ³³ Mg γ).
1258 <i>15</i> 1850 <i>40</i>	1.4 5 0.8 5	1258 1850	$(1/2,3/2^{-})$ $(1/2,3/2^{-})$	0 0	3/2 ⁻ 3/2 ⁻	

[†] From 2021Ba28. [‡] Placement of transition in the level scheme is uncertain.

_7/2___

3/2-

 $^{33}_{12}Mg_{21}$

484

__154_

0