114 5 11 4004 (010 1115)	34 Na eta^- n	decay	(5.0 ms)	1984La03
--------------------------	----------------------	-------	-----------	----------

History

Author Citation Literature Cutoff Date Jun Chen and Balraj Singh NDS 199,1 (2025) 30-Sep-2024

Parent: 34 Na: E=0; $T_{1/2}$ =5.0 ms 9; $Q(\beta^- n)$ =18.65×10³ 60; $\%\beta^- n$ decay=65 35

1984La03: Na isotopes were produced by bombarding a 30 g/cm² Ir target with 10 GeV proton beam from the CERN synchrotron. Fragments were separated and collected into a thin stainless steel tube. β particles were detected with two plastic scintillators and neutrons were detected with a 4π liquid scintillator detector. Measured I(n), β n(t). Deduced parent $T_{1/2}$, β -delayed neutron emission probabilities.

33Mg Levels

Comments

 $^{^{34}}$ Na-J $^{\pi}$: 1⁺ is assigned in 2021Ko07, but no supporting arguments for this firm assignment seem available in the literature.

 $^{^{34}}$ Na- $T_{1/2}$: Weighted average of 5.5 ms 10 (1984La03, β^- n decay); 4.6 ms 9 (1981ThZV).

 $^{^{34}}$ Na-Q(β^- n): From 2021Wa16.

 $^{^{34}}$ Na- $^{8}\beta^{-}$ n decay: $^{8}\beta^{-}$ n=65 35 for the decay of 34 Na, estimated by evaluators from systematics of $^{8}\beta^{-}$ n, $T_{1/2}$ and $Q(\beta^{-}n)$ values for ^{27,28,29,30,31,32,33}Na, and following an approach of ²⁰¹⁴Mc07 for such systematics. Using measured value of $\%\beta^-$ n+2× $\%\beta^-$ 2n=115 20 by 1984La03, the evaluators estimate $\%\beta^-$ 2n=35 20. Almost 100% delayed neutron decay mode of ³⁴Na was indicated by non-observation of any γ rays from A=34 isobars, and in particular from the decay of 34 Na, as stated by 1981GuZM. Note that the values of $\%\beta^-$ n≈15, and $\%\beta^-$ 2n≈50 suggested by 2021Ko07, based on systematic trend of ratio of $\%\beta^-$ n/ $\%\beta^-$ 2n in neighboring nuclei, seem erroneous.