1 H(33 Mg, 33 Mg' γ),(34 Mg, 33 Mg γ) 2006E103,2006FuZX

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen and Balraj Singh	NDS 112, 1393 (2011)	31-Mar-2011			

Includes He(33 Mg, 33 Mg' γ).

Beam=³³Mg, target=liquid hydrogen.

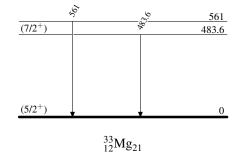
2006El03: ³³Mg particles produced by fragmentation of ⁴⁰Ar beam at 94 MeV/nucleon hitting a ¹⁸¹Ta target. The fragments were separated by RIPS fragment separator. The secondary beam of ³³Mg at 50 MeV/nucleon hit a liquid hydrogen target. The reaction products and scattered particles were detected and identified by a parallel-plate avalanche counter (PPAC) and a silicon detector telescope. Time-of-flight method used for atomic charge selection. The γ rays measured with an array of 146 NaI(Tl) detectors surrounding the target. Deduced mass deformation and neutron deformation parameters.

2006FuZX: ³³Mg particles produced by fragmentation of ⁴⁰Ar beam at 63 MeV/nucleon hitting carbon or beryllium target. The fragments were separated by RIPS fragment separator. The secondary beam of ³³Mg at 40 MeV/nucleon hit helium target. The reaction products and scattered particles were detected and identified by a parallel-plate avalanche counter (PPAC) and a silicon detector telescope. Time-of-flight method used for atomic charge selection. The γ rays measured with an array of NaI(Tl) detectors surrounding the target. The γ -ray peaks reported at 299.4 *11* and 483.6 *10*.

³³Mg Levels

E(level)	$J^{\pi \dagger}$	Comments	
0	$(5/2^+)$	J^{π} : $3/2^{-}$ in Adopted Levels.	_
483.6	$(7/2^+)$	J^{π} : $(3/2^{-})$ in Adopted Levels.	
		$\beta_{\rm mass}$ =0.47 8, $\beta_{\rm n}$ =0.46 10.	
561 17			

[†] Assumed assignments by 2006E103, considering the g.s. and 484 level to have the same parity as proposed by 2002Pr09 in 197 Au(33 Mg, 33 Mg' γ), however, 2002Pr09 assigned 3/2⁺ to g.s.


$\gamma(^{33}Mg)$

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
^x 299.4 11					E_{γ} : from 2006FuZX, possibly the same as the unplaced 297.9 γ reported in ³³ Na decay (2001Nu02).
483.6 17	483.6	$(7/2^+)$	0 (:	5/2+)	E_{γ} : from 2006FuZX. Other: 484 20 (2006El03). σ =33 mb 10 in (p,p').
561 17	561		0 (:	5/2+)	E_{γ} : from 2006El03, possibly the same as 546.2γ in ³³ Na β ⁻ decay. This peak was detected in neutron knockout channel: ¹ H(³⁴ Mg, ³³ Mgγ).

 $x \gamma$ ray not placed in level scheme.

$\frac{{}^{1}\text{H}({}^{33}\text{Mg},\!{}^{33}\text{Mg}'\gamma),\!({}^{34}\text{Mg},\!{}^{33}\text{Mg}\gamma)}{2006\text{El03,2006FuZX}}$

Level Scheme

