¹⁹⁷Au(33 Mg, 33 Mg' γ) **2002Pr09**

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen and Balraj Singh NDS 112, 1393 (2011) 31-Mar-2011

Change made on Aug 22, 2017: previous incorrect $J^{\pi}=(3/2^{+})$ corrected to $(5/2^{+})$. Beam= 33 Mg, target= 197 Au.

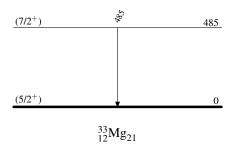
2002Pr09: 33 Mg particles produced by fragmentation of 48 Ca beam at 80 MeV/nucleon hitting a 9 Be target. The fragments were separated by A1200 fragment separator. The secondary beam of 33 Mg at 61.8 MeV/nucleon hit a gold target; Time-of-flight method. The γ rays measured with an array of NaI(Tl) detectors surrounding the target.

³³Mg Levels

E(level) J^{π} Comments

Comments $(5/2^{+})$ J^{π} : $3/2^{-}$ in Adopted Levels.

485 1 $(7/2^{+})$ E(level): This level proposed as member of $5/2^{+}$ g.s. band based on analysis of E2 and E1 transition probabilities deduced from measured cross section and coupled-channel calculations. 2002Pr09 deduced charge and mass deformation parameters as β_{c} =0.52 12 and β_{A} =0.58 13; and concluded that the 485 transition is probably E2. J^{π} : $(5/2^{+})$ in Adopted Levels.


 γ (33Mg)

Comments

 $\frac{E_{\gamma}}{485} = \frac{E_{i}(\text{level})}{485} = \frac{J_{i}^{\pi}}{(7/2^{+})} = \frac{E_{f}}{0} = \frac{J_{f}^{\pi}}{(5/2^{+})} = \frac{\pi}{\sigma = 81 \text{ mb } 25 \text{ for } 0\text{-}2.8^{\circ}}.$

197 Au(33 Mg, 33 Mg' γ) 2002Pr09

Level Scheme

