0?

Adopted Levels:not observed

	History			
	Type Full Evaluation	AuthorCitationJun Chen and Balraj SinghNDS 199,1 (2025)	Citation	Literature Cutoff Date 30-Sep-2024
			NDS 199,1 (2025)	
$Q(\beta^{-}) = -23490 \text{ syst}; S \Delta Q(\beta^{-}) = 450, \Delta S(n) = 450$	$S(n)=22520 \ syst; \ S(p)=450, \ \Delta S(p)=200, \ \Delta O$	$(\alpha) = -2450 \text{ syst}; Q(\alpha) = -8910 \text{ syst}; (\alpha) = 280 \text{ (syst}, 2021\text{Wa16)}.$	st 2021Wa16	
S(2n) = 42860, 360, S(2n) = 42860, 360, S(2n) = 42860, 360, S(2n) = 42860, S(2n) = 428600, S(2n) = 42860, S(2n) = 42860, S(2n) = 42860, S(2	$2p = 00 200, O(\varepsilon) = 16$	$(930, 200, O(\epsilon p) = 13590, 200)$ (s	vst.2021Wa16).	
1996PoZZ: re-analysis	s of upper limits for	$T_{1/2}$ (1986La17) obtained at L	ISE (GANIL). Unbou	nd for one-proton emission.
1986La17: ⁵⁸ Ni(⁴⁰ Ca.	X),E=77.4 MeV/nuc	leon 40 Ca beam was produced	at GANIL. Target wa	as 68% enriched ⁵⁸ Ni. Reacti
products were ide	ntified using the LIS	E spectrometer.		
Theoretical calculation	ns:	*		
2022Zo01, 2021Ma33	, 2016Si02, 1997Co	9: calculated S(p), S(2p), mas	s excess.	
1998Co30: calculated	binding energy.			
Additional information	n 1.			
		³³ K L	evels	
E(level) T _{1/2}			Comments	

<25 ns %p=? S(p)=-2450 200 (syst, 2021Wa16) suggests that ³³K is unbound for one-proton emission. $T_{1/2}$: estimated by 1996PoZZ from limit of detection. J^{π} : 3/2⁺ from theory in 2019Mo01 and systematics in 2021Ko07. Theoretical $T_{1/2}(\beta \text{ decay})=36.3 \text{ ms}$ (2019Mo01).

1