Adopted Levels, Gammas

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024

 $Q(\beta^{-})=-11619.0\ 6;\ S(n)=15740.0\ 7;\ S(p)=2276.8\ 4;\ Q(\alpha)=-6475.4\ 5$ 2021Wa16

S(2n)=30111 3, S(2p)=11140.7 4, Q(\varepsilon)=5582.5 4 (2021Wa16).

³³Cl first identified and produced in ³²S(d,n) reaction at 8 MeV bombarding energy (1940Ho01).

Mass measurement: 2011Tu09, 2003B117.

Theoretical calculations:

2023Se01: calculated ft value of β decay and magnetic moment.

2008Pe13: calculated magnetic moment, β -decay half-life, gyromagnetic ratio.

1974Wi04: calculated $\sigma(\theta)$ and spectroscopic factors of two-nucleon transfer.

1970Ba14: calculated levels, J, π , B(E2), B(M1), magnetic and quadrupole moments using vibration-particle coupling model.

³³Cl Levels

Cross Reference (XREF) Flags

		$ \begin{array}{ccc} A & {}^{33}{}_{A} \\ B & {}^{35}{}_{C} \\ C & {}^{2}{}_{H} \\ D & {}^{32}{}_{S} \end{array} $	Ar ε decay (174. Ca ε 2p decay (25 (³² S,n γ) S(p, γ):res	3 ms) E ${}^{32}S(p,p),(pol p,p):res$ I ${}^{35}Cl(p,t)$ 5.7 ms) F ${}^{32}S(d,n)$ J ${}^{36}Ar(p,\alpha)$ G ${}^{32}S({}^{3}He,d)$ H ${}^{32}S({}^{3}He,d\gamma)$
E(level) [†]	J^{π}	$T_{1/2 \ 1/2}$ or Γ^{\ddagger}	XREF	Comments
0.0	3/2+	2.5059 s 23	ABCD FGHIJ	$%ε+%β^+=100$ μ=+0.7547 3 (2004Ma98,2019StZV) $J^{π}$: L(p,t)=0 from 3/2 ⁺ ; L(³ He,d)=L(d,n)=2 from 0 ⁺ . T _{1/2} : weighted average of 2.5038 s 22 (2015Gr14), 2.507 s 8 (1977Az01), 2.513 s 4 (1973Ta04), 2.52 s 14 (1972Es02), 2.47 s 2 (1970Sc16), 2.51 s 2 (1960Ja12), and 2.53 s 2 (1958Mu05). Others: 2.8 s (1940Ho01), 2.4 s 2 (1941Wh02), 2.8 s (1948Sc20), 1.8 <i>I</i> (1951Bo56), 1.7 s (1954Ty33), 2.9 s <i>I</i> (1960Wa04), 1962Va27, 2.5 s 5 (1970Ba65). μ: from β-NMR method (2004Ma98).
810.57 15	1/2+	1.25 ps 24	A CD FGHIJ	$\Gamma_{\gamma}=3.7 \times 10^{-4} \text{ eV } 6$ J ^{π} : L(³ He,d)=L(d,n)=0 from 0 ⁺ . T _{1/2} : from DSAM in ² H(³² S,n γ). Other: >0.17 ps by DSAM in (p, γ):res.
1986.6 4	5/2+	53 fs 12	D FG IJ	$\Gamma_{\gamma} = 0.011 \text{ eV } 3$ J^{π} : spin from $\gamma \gamma(\theta)$ in (p, γ); res: parity=+ from L(p,t)=2 from 0 ⁺ .
2352.02 26	3/2+	69 fs 21	A D FG IJ	Γ_{γ} =0.007 eV 2 J ^{π} : spin from $\gamma(\theta)$ in (p, γ); parity from 1541.5 γ M1+E2 to 1/2 ⁺ .
2685.6 4	(5/2)-	9 ps +15-4	D FG	Γ =5.0×10 ⁻⁵ eV 31; Γ _γ =1.4×10 ⁻⁵ eV 6 (2J+1)Γ _γ Γ _p /Γ=9×10 ⁻⁵ eV 4 (1976A101). J ^π : L(d,n)=L(³ He,d)=3 from 0 ⁺ ; 2685.5γ to 3/2 ⁻ ; possible 1874.8γ to 1/2 ⁺ . But 7/2 ⁻ from theoretical predictions (1976A101) cannot be ruled out. T _{1/2} : deduced by the evaluators from Γ=5.0×10 ⁻⁵ eV 31 determined based on Γ _x =1.4×10 ⁻⁵ eV 6 and Γ _x /Γ=0.22.8 in (p.γ):res (1976A101)
2839.13 30	5/2+	3 fs 1	D	$\Gamma_{\gamma}=0.14 \text{ eV } 5$ (2J+1) $\Gamma_{\gamma}\Gamma_{\rho}/\Gamma=0.08 \text{ eV } I$ (1976Al01). J ^{π} : from $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (p, γ):res.
2846.43 30	3/2-	≤0.7 fs	D FG	$\Gamma_{\gamma}=0.07 \text{ eV } 2$ $(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma=0.21 \text{ eV } 3 \text{ (1976A101)}.$ $J^{\pi}: \text{ spin from } \gamma(\theta) \text{ and parity from } \gamma(\text{lin pol}) \text{ in } (p,\gamma):\text{res; also}$ $L(d,n)=L(^{3}\text{He},d)=1 \text{ from } 0^{+}.$

³³Cl Levels (continued)

E(level) [†]	J^{π}	$T_{1/2 \ 1/2}$ or Γ^{\ddagger}	XF	REF	Comments
2975.54 30	7/2+	60 fs 14	D	GΙ	$\Gamma_{\gamma} = 7.7 \times 10^{-3} \text{ eV } 18$ XREF: I(2950).
					J^{π} : spin from $\gamma(\theta)$ in (p, γ):res and parity from L(p,t)=2 from $3/2^+$.
3816.34 30	5/2+		D		$\Gamma_{\gamma} > 8.8 \times 10^{-3} \text{ eV}$
					J^{π} : spin from $\gamma(\theta)$ in (p, γ):res; parity from 1464.4 γ M1+E2
					to $3/2^+$.
3971.16 20	$3/2^{+}$	≤0.3 keV	A D	I	$\Gamma_{\gamma}=0.23 \text{ eV } 4$
					XREF: I(3990).
					$(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma=0.03 \text{ eV } 2 \text{ (1976Al01)}.$
					M_1+E2 to $1/2^+$.
					Γ: from 2006Tr10 in (p, γ):res. Others: 0.6 keV (1968Li07), 5
2070 06 20	5/2-	<0.6 koV	л		keV 3 (1976Al01). $M_{\rm e}$ spin from $\alpha(0)$ in (pay) row parity from 1122 for M1 + E2
3979.00 20	5/2	<0.0 Ke v	D		to $3/2^-$.
					$(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma=0.38$ keV 4 in (p, γ):res (1976Al01).
4099.5 11	$(1/2^+, 3/2, 5/2^+)$		D		Additional information 2.
					J^{π} : 2113 γ to 5/2 ⁺ , 3289 γ to 1/2 ⁺ .
					$(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma=0.019 \text{ eV } 8.$
4112.28 20	3/2+	≤0.6 keV	A D		J ^{π} : spin from $\gamma\gamma(\theta)$ in (p, γ):res; parity from 3301.4 γ M1+E2 to $1/2^+$.
					Γ: other: <3 keV from ³³ Ar ε + β ⁺ decay.
4110 2	2/2-#	0.21 37.15	D		$(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma=0.07 \text{ eV } 2 (1976\text{Al}01).$
4118 2	3/2 "	9.3 KeV 15	DE	LFG	Additional information 3
					E(level): from E_p in (p,γ) :res.
					J ^{π} : also supported by L(d,n)=L(³ He,d)=1 from 0 ⁺ .
					Γ : weighted average of 14 keV 4 (1976Al01) and 10 keV 3 (1002U01) in (n c) and 8.5 keV 45 (1058O116) in
					(1992101) III (p,γ) :res and 8.3 keV 13 (19380110) III (p,p) :res.
					$(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma=0.19 \text{ eV } 7 \text{ (1976Al01)}.$
4439.02 20	1/2+	2 keV 1	A D	g	XREF: $g(4450)$.
					$\epsilon + \beta^+$ feeding (log $ft = 4.81.5$) from $1/2^+$ parent: $1/2$ from
					(p,p) in a private communication by the evaluator of
					1978En02 in 1977 with V. Meyer, one of the authors of the
					Later publications of 1980 wa28 and 1983 wa28. Γ : from ³³ Ar s+ β^+ decay and (p a) res
					$(2J+1)\Gamma_{\gamma}\Gamma_{D}/\Gamma=0.30 \text{ eV } 4 (1976\text{Al}01).$
4464.4 4	3/2+	<2 [@] keV	A D	g	XREF: g(4450).
					J^{π} : spin from $\gamma(\theta)$ in (p,γ) :res: parity from allowed $\varepsilon + \beta^+$
					recalling $(\log ft=5.658 \ 8)$ from 1/2 ⁺ parent. (21+1) $\Gamma_{\rm e} \Gamma_{\rm e} / \Gamma_{\rm e} = 0.14 \ {\rm eV} \ 2 \ (1976 \ A 101)$
4516 <i>4</i>	1/2 ^{-#}	55 [#] keV 5	F	F	XREF: F(4550).
4746.8 15	5/2+	<2.3 fs	D		Additional information 4.
					E(level): from E _p in (p, γ):res.
					J^{**} ; spin= $3/2$ from $\gamma(\theta)$ in 19/0PTZW; M2 for 3936 γ to $1/2^{+}$ ruled out by RUL and $T_{1/2} < 2.3$ fs.
					$T_{1/2}$: deduced by the evaluators from Γ >0.2 eV based on
					$(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma=1.4 \text{ eV } 2 \text{ (1976Al01)}.$

³³Cl Levels (continued)

E(level) [†]	J^{π}	$T_{1/2 \ 1/2}$ or Γ^{\ddagger}		XREF	Comments
4777 3	7/2-	0.25 [#] keV 5		DEFG	XREF: F(4790).
					Additional information 5.
					E(level): from E_p in (p,γ) :res and (p,p) :res.
					J [*] : 1930 γ E2 to 3/2 ; L(³ He,d)=3 from 0 ⁺ . 7/2 also from R-matrix analysis of $\sigma(\theta)$ data in (p.p.) res
					$(2J+1)\Gamma_{\nu}\Gamma_{p}/\Gamma=0.093 \text{ eV } 19 (1976\text{Al}01).$
4835 2	$3/2^{+}$	<2 [@] keV	A	D	Additional information 6.
	,				E(level): from ³³ Ar $\varepsilon + \beta^+$ decay.
					J ^{π} : spin=3/2 from $\gamma(\theta)$ in (p, γ):res; parity from allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.509 8) from 1/2 ⁺ parent.
5002 2	3/2-#	6.0 [#] keV 20		DE	Additional information 7. E(level): from E_p in (p,p):res. Other: 5002 in (p, γ):res.
5090 2	7/2 ^{-#}	≤0.5 [#] keV		DE G	Additional information 8.
					E(level): from E _p in (p,p):res. Other: 5090 20 from (³ He,d).
5106 2	3/2+#	1.5 [#] keV 5	A	DE	Additional information 9.
					E(level): from ³³ Ar $\varepsilon + \beta^+$ decay. Other: 5105 2 from (p,p):res.
5117 15	1/2 ^{-#}	298 [#] keV <i>31</i>		EF	XREF: F(5090).
					E(level): the evaluators consider 5090, $1/2^{-1}$ level in (d,n) the same
5200.50				г	E(level): likely a multiplet (1971Vi02).
5276 2	5/2 ^{-#}	0.34 [#] keV 6		DEF	Additional information 10.
		_			E(level): from E _p in (p,p):res.
5300 2	(3/2)+	<10 [@] keV	A		J^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.84 6) from 1/2 ⁺ parent; 3/2 favored in barrier-penetration calculations (2010Ad03).
5374 2	5/2+#	0.44 [#] keV 8		E	
5448 1	1/2+#	30 [#] keV 2		E	
5548.4 5	1/2 ^{+#}	105 [#] eV 9	A	DE i	T=3/2 XREF: i(5550).
					Γ: others: <2 keV in (p,γ):res, <0.8 keV in ³³ Ar ε +β ⁺ decay.
					IAS of $1/2^+$ g.s. in ³³ Ar.
	<i>⊐</i> /2−#	0.70#1.37.12			$(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma = 0.76 \text{ eV} \ 18 \ (1972\text{Es02}).$
2222 1	1/2 "	0.73" kev 13		EGI	XREF: $1(5550)$. E(layel): from (p.p):res. Other: 5550, 30 from (³ He d)
					I^{π} also supported by $I({}^{3}\text{He }d)=3$ from 0^{+}
5651 10	3/2-#	100 [#] keV <i>10</i>	а	Ef	XREF: a(5669)f(5660).
000110	0/2	100 100 10	~		J^{π}, Γ : from R-matrix analysis of $\sigma(\theta)$ data in (p,p).
					Additional information 11.
5694 9			а	Df	XREF: $a(5669)f(5660)$.
5731 3	1/2+#	38 koV 5	٨	F	E(level): molif E _p in (p, γ). les. E(level): weighted average of 5732 3 from ³³ Ar c β ⁺ decay and
5754 5	1/2	JO KEV J	л	L	5738 5 from (p.p).
					Γ: weighted average of 30 keV 10 from ³³ Ar ε +β ⁺ decay and 40 keV 5 from (p,p).
5867 <i>3</i>	1/2+,3/2+	1.4 [@] keV 5	A		J ^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.40 7) from 1/2 ⁺ parent.
5879 2	5/2 ^{-#}	1.50 [#] keV 30		DEFG	E(level): from (p,p):res. Other: 5870 20 from (³ He,d), 5890 from
					(d,n).
					1: other: 15 keV for E(level)=58/9 9 from (p,γ) :res, the large width could indicate a composite peak.
6149 <i>3</i>	5/2+ [#]	0.40 [#] keV 10	A	DE	XREF: A(6118?).
					E(level): weighted average of 6142 9 from (p,γ) :res and 6150 3 from

³³Cl Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}$ $_{1/2}$ or Γ^{\ddagger}		XREF		Comments
						(p,p).Γ: other: 13 keV from (p,γ):res, the large width could indicate a composite peak.
6192 3	3/2 ^{-#}	1.0 [#] keV 2		dE		XREF: d(6198). E(level): 6198 6 from (p,γ) :res could be a doublet of 6192 3 and 6203 3 in (p,p) :res. Γ : other: <10 keV for E(level)=6198 6 in (p,γ) :res.
6203 <i>3</i>	3/2+ #	5.0 [#] keV 5		dE		XREF: d(6198).
6247 5	(3/2 ⁻) [#]	6.5 [#] keV 15		dE		 XREF: d(6253). E(level): 6253 6 from (p,γ):res could be a doublet of 6247 5 and 6256 5 in (p,p):res. Γ: other: <6 keV for E(level)=6253 6 in (p,γ):res.
6255 2	1/2+	2 [@] keV <i>1</i>	A	dE		XREF: d(6253). E(level): from ³³ Ar $\varepsilon + \beta^+$ decay. Other: 6256 5 from (p,p). J ^{π} : 1/2 ⁺ ,3/2 ⁺ from allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =4.589 <i>16</i>) from 1/2 ⁺ parent; (1/2 ⁺ ,7/2 ⁺) from R-matrix analysis of $\sigma(\theta)$ data in (p,p):res. Γ : others: 6 keV 3 from (p,p):res; <6 keV for E(level)=6253 6 in (p, γ):res.
6290 <i>3</i>	7/2 ^{-#}	4.0 [#] keV 10		EFG		XREF: G(6250). E(level): from (p,p):res. Others: 6290 from (d,n), 6250 <i>30</i> from $({}^{3}$ He,d).
6314 2	1/2,3/2		A	D		T has supported by $E(a,n)=(3)$ and $E(-He,a)=3$ from 0. XREF: D(6308). E(level): from ³³ Ar $\varepsilon + \beta^+$ decay. Other: 6308 9 from (p,γ) :res. J ^{π} : $\varepsilon + \beta^+$ feeding (log <i>ft</i> =6.28 20) from 1/2 ⁺ parent.
6392 <i>5</i> 6593 <i>5</i>	3/2 ^{-#} 1/2,3/2	69 [#] keV 7	A	EF G		XREF: F(6440). XREF: G(6580). E(level): from ³³ Ar $\varepsilon + \beta^+$ decay. Other: 6580 30 in (³ He,d). J ^{π} : $\varepsilon + \beta^+$ feeding (log <i>ft</i> =6.69 7) from 1/2 ⁺ parent. But L(³ He,d)=(3,4) suggests (5/2 ⁻ ,7/2,9/2 ⁺).
6626 <i>3</i>	5/2+#	5 [#] keV 2		dE		 XREF: d(6629). E(level): 6629 9 from (p,γ):res could be a doublet of 6626 3 and and 6230 5 in (p,p):res. Γ: other: 33 keV for E(level)=6629 9 in (p,γ):res.
6630 <i>5</i>	(5/2) ^{-#}	25 [#] keV 3		dEF		XREF: d(6629)F(6660). J ^{π} : also supported by L(³ He,d)=(3) for a group at 6660.
6672 9				D		
6698 <i>3</i> 6850	5/2+# 3/2 ⁺ #	$5.5^{#}$ keV 9 $0.36^{#}$ keV 15		E DEf		T=3/2
6855 <i>3</i>	3/2 ⁺ ,5/2 ⁺ #	30 [#] keV 10		DEf		XREF: $f(6840)$. E(level): from (p,p):res. Other: 6855 9 in (p, γ):res.
6901	щ	щ		D		
6920 <i>3</i>	$5/2^{-#}$	20 [#] keV 2		E		VEEL D/(000)/(050)
6949 2	1/2(+),3/2(+)	#	A	D	1	XREF: D(6938)1(6950). E(level): from ³³ Ar $\varepsilon + \beta^+$ decay. Other: 6938 9 in (p, γ):res, 6050 50 from (p,t). J ^{π} : probable allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.94 3) from 1/2 ⁺ parent.
6983 <i>3</i>	3/2**	10 ^π keV <i>1</i>		DE	i	T=3/2 XREF: i(6950). E(level): from (p,p):res. Other: 6984 9 in (p, γ):res.

³³Cl Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}$ $_{1/2}$ or Γ^{\ddagger}	XREF		7	Comments
6993 <i>3</i>	5/2-#	7.0 [#] keV 7		EF		XREF: F(6970).
7094 <i>3</i>	5/2 ^{+#}	18 [#] keV 2		Е		
7142 5	1/2,3/2		A			J ^{π} : ε + β ⁺ feeding (log <i>ft</i> =7.14 6) from 1/2 ⁺ parent.
7178 8	3/2-#	13.0 [#] keV <i>13</i>		Е		
7211 4	5/2+ [#]	2.6 [#] keV 5		dE		XREF: d(7221).
7230 40	5/2-,7/2-			d G		XREF: $d(7221)$.
						E(level): from (°He,d). I^{π} : I (³ He d)=3 from 0 ⁺
7265 6	3/2+#	$30^{\#}$ keV 3		dF		J : E(116, 0) = 5 from 0.
7275 4	$3/2^{-\#}$	$20^{\#}$ keV 3		dF		XRFF: d(7280)
1213 1	5/2	20 10 0		u		E(level): 7280 9 from (p,γ) :res could be a doublet of 7264 6 and and 7275 4 in (p,p) :res. Γ : other: 29 keV for E(level)=7280 9 in (p,γ) :res.
7289 6	$(3/2)^+$	10 [@] keV 5	Α			J^{π} : $1/2^+, 3/2^+$ from allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.59 8) from $1/2^+$
						parent; 3/2 favored from barrier-penetration calculations (2010Ad03).
7301 <i>3</i>	9/2 ^{+#}	4.0 [#] keV 4		Ef		XREF: f(7330).
7323 50	7/2 ^{-#}	3.0 [#] keV 3		DEf	i	XREF: D(7343)f(7330)i(7350).
						E(level): from (p,p):res. Others: 7343 9 from (p,γ) :res, 7350 50 from (p, γ)
						J^{π} : other: $(9/2^+, 7/2^-)$ for a group at 7330 in (d.n).
7392 2	5/2+ [#]	108 [#] eV 7		dE	i	T=3/2
						XREF: d(7397)i(7350).
						E(level): 7297 9 from (p,γ) :res could be a doublet of 7392 2 and and 7300 3 in (p,p) :res
						Γ : other: <2 keV for E(level)=7297 9 in (p,p):res.
						$(2J+1)\Gamma_{\gamma}\Gamma_{p}/\Gamma=1.50 \text{ eV} 37 (1972\text{Es02}).$
7399 <i>3</i>	5/2+ #	11.0 [#] keV <i>11</i>		de	i	XREF: d(7397)e(7399)i(7350).
7404 10	1/2,3/2	#	A			J^{π} : $\varepsilon + \beta^+$ feeding (log <i>ft</i> =6.73 5) from 1/2 ⁺ parent.
7449 4	3/2-#	35.0^{m} keV 35		dE		XREF: d(7463).
74713	1/2+#	$1.50^{#}$ keV 15		dE		XREF: $d(7463)$.
/482 2	1/2*	6.5 keV 20	A	DE		E(level): from ³⁵ Ar $\varepsilon + \beta'$ decay. Others: /486 6 in (p, γ):res and 7482 4 in (p,p):res
						J^{π} : from R-matrix analysis of $\sigma(\theta)$ data in (p,p); allowed $\varepsilon + \beta^+$
						feeding (log ft =4.35 6) from 1/2 ⁺ .
7400	$(1/2^{-} 3/2^{-})$			F		1: others: <8 keV from (p,γ) :res, 13.0 keV 13 from (p,p) :res. E(level): probably the same level as 7/82, but I^{π} is inconsistent
7490	(1/2 ,5/2)			r		J^{π} : L(d,n)=(1) from 0 ⁺ .
7540 4	$1/2^+, 3/2^+$	<4 [@] keV	A			J^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =4.94 <i>12</i>) from 1/2 ⁺ parent.
7551 2	$1/2^+, 3/2^+$	<10 [@] keV	A			J ^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.19 4) from 1/2 ⁺ parent.
7667 4	$1/2^+, 3/2^+$	8 [@] keV 4	A			J ^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.10 <i>11</i>) from 1/2 ⁺ parent.
7720	(5/2 ⁻ ,7/2 ⁻)			DF		XREF: D(7706). J^{π} : L(d,n)=(3) from 0 ⁺ .
7766 5	$(1/2)^+$	10 [@] keV 6	A			J^{π} : allowed $\varepsilon + \beta^+$ feeding (log $ft=5.32$ 6) from $1/2^+$ parent; $1/2$
						L(p)=0 transition.
7930	$(5/2^-, 7/2^-)$	-		F		J^{π} : $L(d,n)=(3)$ from 0^+ .
8077 <i>3</i>	$1/2^+, 3/2^+$	34 [@] keV 6	A		i	T=1/2+3/2
						XREF: i(8100). M_{\pm} allowed $c_{\pm} R^{\pm}$ feading (log ft-4.10.7) from 1/2 ⁺ parent
8110	(5/2 ⁻ ,7/2 ⁻)			FG	i	XREF: G(8150)i(8100).
8110	$(5/2^{-},7/2^{-})$			FG	i	XREF: i(8100). J^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =4.10 7) from 1/2 ⁺ parent. XREF: G(8150)i(8100).

³³Cl Levels (continued)

E(level) [†]	J^{π}	$T_{1/2 \ 1/2}$ or Γ^{\ddagger}	XREF		Comments
8130 <i>3</i>	1/2+,3/2+		A	i	J^{π} : L(d,n)=L(³ He,d)=(3) from 0 ⁺ . XREF: i(8100). J^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.34 <i>16</i>) from 1/2 ⁺ parent.
8183 5	$(1/2)^+$	22 [@] keV 6	A		T=1/2+3/2 J ^{π} : allowed ε + β ⁺ feeding (log <i>ft</i> =4.27 <i>12</i>) from 1/2 ⁺ parent; 1/2 favored in barrier-penetration calculations (2010Ad03)
8290	(5/2 ⁻ ,7/2 ⁻)			FG	XREF: G(8350). J^{π} : L(d,n)=L(³ He,d)=(3) from 0 ⁺ .
8316 <i>6</i> 8490 <i>6</i>	1/2 ⁺ ,3/2 ⁺ (1/2) ⁺		A A	F	J^{π} : allowed $\varepsilon + \beta^+$ feeding (log $ft=4.91$ 12) from $1/2^+$ parent. J^{π} : allowed $\varepsilon + \beta^+$ feeding (log $ft=5.74$ 6) from $1/2^+$ parent; $1/2$ favored from proton decay to 0^+ g.s. and 0^+ excited state, possible L(p)=0 transition. However, L(d,n)=(3) from 0^+ for a group at 8490 suggests ($5/2^-, 7/2^-$).
8558 5	(3/2)+		A		J^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =4.57 9) from 1/2 ⁺ parent; 3/2 favored in barrier-penetration calculations (2010Ad03). Additional information 12.
8710 50	5/2-,7/2-			G	J^{π} : L(^{3He} He,d)=3 from 0 ⁺ .
8813 8	1/2,3/2		Α		J ^{π} : ε + β ⁺ feeding (log <i>ft</i> =6.04 7) from 1/2 ⁺ parent.
8849 5	1/2+,3/2+		A	f	XREF: f(8860). J^{π} : allowed $\varepsilon + \beta^+$ feeding (log/t=4.65 18) from 1/2 ⁺ parent. But L(d,n)=(3) from 0 ⁺ for a group at 8860 suggests (5/2 ⁻ ,7/2 ⁻).
8864 10	1/2,3/2		A	f	XREF: f(8860). J^{π} : $\varepsilon + \beta^+$ feeding (log <i>ft</i> =6.28 <i>13</i>) from 1/2 ⁺ parent. But L(d,n)=(3) from 0 ⁺ for a group at 8860 suggests (5/2 ⁻ ,7/2 ⁻).
8964 8	$(1/2)^+$		A		J^{π} : allowed $\varepsilon + \beta^+$ feeding (log $ft=4.35 \ II$) from $1/2^+$ parent; $1/2$ favored in barrier-penetration calculations (2010Ad03).
9117 6	$(3/2)^+$		A		J^{π} : allowed $\varepsilon + \beta^+$ feeding (log $ft=4.69$ 5) from 1/2 ⁺ parent; 3/2 favored in barrier-penetration calculations (2010Ad03).
9154 6	$(3/2)^+$		A		J^{π} : allowed $\varepsilon + \beta^+$ feeding (log $ft=4.61.5$) from $1/2^+$ parent; $3/2$ favored in barrier-penetration calculations (2010Ad03).
9193 9	$1/2^+, 3/2^+$		Α		J ^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =5.32 5) from 1/2 ⁺ parent.
9560	$(5/2^-, 7/2^-)$			F	J^{π} : L(d,n)=(3) from 0 ⁺ .
9583 6	$1/2^+, 3/2^+$		Α		J ^{π} : allowed $\varepsilon + \beta^+$ feeding (log <i>ft</i> =4.94 <i>11</i>) from 1/2 ⁺ parent.
9780	$(5/2^-, 7/2^-)$			F	J^{π} : L(d,n)=(3) from 0 ⁺ .

[†] From a least-squares fit to $E\gamma$ values with $\Delta E\gamma$ up to 5548 level, from E_p in (p,γ) :res or (p,p):res for levels up to 7471 level, and from ³³Ar $\varepsilon + \beta^+$ decay for levels above that, unless otherwise noted.

[‡] Half-lives by DSAM and widths up to 4835 level are from (p,γ) :res, widths for levels up to 7471 level are from (p,p):res, and widths for levels above that are from ³³Ar $\varepsilon + \beta^+$ decay, unless otherwise noted.

[#] From analysis of $\sigma(\theta)$ data in (p,p):res using dispersion theory (up to 5448 level) or R-matrix theory (above 5448 level).

[@] From the measured peak shape of delayed-proton and the calculated recoil broadening in ³³Ar $\varepsilon + \beta^+$ decay (1993Sc16).

$\gamma(^{33}\text{Cl})$

Additional information 13.

7

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
810.57	1/2+	810.57 16	100	0.0	3/2+	[M1]			B(M1)(W.u.)=0.0331 +75-53 E_{γ} : weighted average of 810.6 2 from ³³ Ar ε + β ⁺ decay, 810.7 3 from (p, γ):res, and 810.51 <i>16</i> from (³ He,d γ). Additional information 14.
1986.6	5/2+	1176.0 [#]	<6	810.57	1/2+	[E2]		4.51×10 ⁻⁵ 6	B(E2)(W.u.)<55 Additional information 15.
		1986.5 4	100	0.0	$3/2^{+}$	M1+E2	+0.53 6	2.68×10^{-4} 5	B(M1)(W.u.)=0.040 +12-8; B(E2)(W.u.)=11.7 +41-29
2352.02	3/2+	1541.5 5	100.0 27	810.57	1/2+	M1+E2	+0.44 4	9.99×10 ⁻⁵ 16	B(M1)(W.u.)=0.054 +23-13; B(E2)(W.u.)=18.0 +83-49 E_{γ} : from ³³ Ar $\varepsilon + \beta^+$ decay. L: other: 100.9 from ³³ Ar $\varepsilon + \beta^+$ decay.
		2351.9 3	35.1 27	0.0	3/2+	M1+E2	-1.3 4	4.62×10 ⁻⁴ 18	B(M1)(W.u.)=0.0024 +17-9; B(E2)(W.u.)=3.0 +13-11 E_{γ} : weighted average of 2352.4 β from ³³ Ar $\varepsilon + \beta^+$ decay and 2351.8 β from (p, γ):res.
2685.6	(5/2)-	699.0	100 16	1986.6	5/2+	(E1)			B(E1)(W.u.)=1.41×10 ⁻⁴ +72-92 Mult.: D(+Q) with δ =-0.0 6 from $\gamma(\theta)$ in (p, γ):res; $\Delta\pi$ =yes from level scheme: M2 ruled out by RUL
		1875.0 2685.5 <i>4</i>	≤ 14.5 45 9	810.57 0.0	$\frac{1}{2^{+}}$ $\frac{3}{2^{+}}$				Additional information 16.
2839.13	$5/2^{+}$	2028.49	1.0 4	810.57	$1/2^{+}$	[E2]		$3.41 \times 10^{-4} 5$	B(E2)(W.u.)=8.6 +58-37
	1	2839.0 <i>3</i>	100.0 4	0.0	3/2+	M1+E2	-0.10 2	6.06×10 ⁻⁴ 9	B(M1)(W.u.)=0.31 + 15-8; B(E2)(W.u.)=1.6 + 11-6
2846.43	3/2-	2035 15	100 8	810.57	1/2+	E1		6.74×10 ⁻⁴ 14	B(E1)(W.u.) \geq 0.054 Mult.: from $\gamma(\theta)$ in 1958Va22 and $\gamma(\text{lin pol})$ in (p, γ):res (1959Su55).
		2846.3 <i>3</i>	85 8	0.0	3/2+	E1		1.17×10 ⁻³ 2	B(E1)(W.u.) \geq 0.017 Mult.: from $\gamma(\theta)$ in 1958Va22 and $\gamma(\text{lin pol})$ in (p,γ) :res (1959Su55).
2975.54	7/2+	988.9	18 5	1986.6	5/2+	M1+E2	+0.31 3		B(M1)(W.u.)=0.053 +21-16; B(E2)(W.u.)=21.2 +96-71 Additional information 17.
		2975.4 3	100 5	0.0	3/2+	E2		7.77×10 ⁻⁴ 15	B(E2)(W.u.)=5.4 +21-14 Mult.: Q(+O) with δ =-0.09 9 from $\gamma(\theta)$ in (p, γ):res; M2(+E3) and M3 component in E2+M3 ruled out by RUL.
3816.34	$5/2^{+}$	840.8	18.6 23	2975.54	7/2+				
		977.2	28 5	2839.13	5/2+	M1+E2	+0.47 16	_	
		1464.3	100 7	2352.02	$3/2^{+}$	M1+E2	+0.17 4	7.51×10 ⁻⁵ 11	
		1829.7	49 7	1986.6	5/2+	M1+E2	-0.22 3	1.94×10 ⁻⁴ 3	

³³₁₇Cl₁₆-7

$\gamma(^{33}\text{Cl})$ (continued)

E_i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
3816.34	5/2+	3005.62	7.0 23	810.57 1/2+				
		3816.1 <i>3</i>	30 5	$0.0 3/2^+$	M1+E2	-2.5 3	1.09×10^{-3} 2	
3971.16	$3/2^{+}$	1132.0	16 8	2839.13 5/2+				
	- 1	1619.10	16 4	2352.02 3/2+				
		1984.5	32 4	1986.6 5/2+				
		3160.43	36 4	810.57 1/2+	(M1(+E2))	$-0.00\ 2$		Mult.: D(+Q) from $\gamma(\theta)$ in (p, γ):res; $\Delta \pi$ =no from
				,				level scheme.
		3970.9 2	100 <i>6</i>	$0.0 3/2^+$	M1+E2	+0.504	1.06×10^{-3} 2	
3979.06	5/2-	1003.5	0.33 22	2975.54 7/2+				
	,	1132.6	2.4 5	2846.43 3/2-	M1+E2	-0.23 8		
		1139.9	1.33 <i>33</i>	2839.13 5/2+	(E1(+M2))	-0.03 15		Mult.: D(+Q) from $\gamma(\theta)$; $\Delta \pi$ =yes from level scheme.
		1293.4	2.5 5	$2685.6 (5/2)^{-1}$	M1+E2	-0.93		δ : for J(2685)=5/2. Other: +0.25 6 or +7 2 for J=7/2.
		1992.4	3.9 6	1986.6 5/2+				
		3978.8 2	100.0 11	$0.0 3/2^+$	(E1(+M2))	$-0.01\ 2$	1.68×10^{-3} 2	Mult.: D(+O) from $\gamma(\theta)$: $\Delta \pi$ =ves from level scheme.
4099.5	$(1/2^+, 3/2, 5/2^+)$	1253.0	6.7 17	2846.43 3/2-				
		2112.8	100 7	1986.6 5/2+				
		3288.8	30 5	810.57 1/2+				
		4099.2	30.0 33	$0.0 3/2^+$				
4112.28	$3/2^{+}$	3301.53	100 10	810.57 1/2+	M1+E2	-0.10 5		
		4112.0 2	100 10	$0.0 3/2^+$				
4118	3/2-	1272	1.5 7	2846.43 3/2-				
		3307	100 <i>6</i>	810.57 1/2+				
		4118	29 6	$0.0 3/2^+$				
4439.02	$1/2^{+}$	1592.6	1.4 5	2846.43 3/2-				
		2086.93	8.0 11	2352.02 3/2+				
		3628.24	4.6 11	810.57 1/2+				
		4438.7 2	100.0 23	$0.0 3/2^+$				
4464.4	3/2+	2477.7	55 6	1986.6 5/2+				
		3653.6	57 6	810.57 1/2+				
		4464.1 <i>4</i>	100 9	$0.0 3/2^+$				
4746.8	5/2+	1771.2	14.1 26	2975.54 7/2+				
		1907.6	1.3 4	2839.13 5/2+				
		2061.1	0.51 26	2685.6 (5/2)-				
		2394.7	2.1 4	2352.02 3/2+				
		2760.1	10.3 26	1986.6 5/2+			-	
		3936.0	0.8 4	810.57 1/2+	[E2]		$1.15 \times 10^{-3} 2$	B(E2)(W.u.)>0.12 Mult.: M2 ruled out by RUL and $T_{1/2}$ <2.3 fs from Γ >0.2 eV of 4747 level deduced from
		1716 1	100.0.26	0.0 2/2+				$(2J+1)I_{\gamma}I_{p}/I = 1.4 \text{ eV } 2.$
1777	7/2-	4/46.4	100.0 26	$0.0 3/2^+$				
4///	1/2	1801	<3.7	29/5.54 //2'				

 ∞

γ (³³Cl) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π} Mult	$.^{\dagger}$ δ^{\dagger}	Comments
4777	$7/2^{-}$	1931	17 4	2846.43 3	/2 ⁻ E2		
		1938	100 10	2839.13 5	$/2^+$ (E1(+N	(12)) -0.022	Mult.: D(+Q) from $\gamma(\theta)$ in (p, γ):res; $\Delta \pi$ =yes from level scheme.
		2091	72 10	2685.6 (5	$5/2)^{-}$ M1+E2	2 +0.21 4	δ: for J(2685)=5/2. Other: -0.32 4 for J(2685)=7/2.
		2790	<1.9	1986.6 5	/2+		
4835	$3/2^{+}$	2848	3.8	1986.6 5	/2+		
		4024	21.3	810.57 1	/2+		
		4835	100	0.0 3	/2+		
5002	$3/2^{-}$	2650	19.6	2352.02 3	/2+		
		3015	8.7	1986.6 5	/2+		
		4191	89	810.57 1	/2+		
		5002	100	0.0 3	/2+		
5090	$7/2^{-}$	4279	41	810.57 1	$/2^{+}$ [E3]		
		5090	100	0.0 3	/2+		
5106	$3/2^{+}$	2754	9.3	2352.02 3	/2+		
		4295	7	810.57 1	/2+		
		5106	100	0.0 3	/2+		
5276	5/2-	2924	22	2352.02 3	/2+		
		3289	25	1986.6 5	/2+		
		5276	100	0.0 3	/2+		
5548.4	$1/2^{+}$	4737.5 5	100 2	810.57 1,	/2+		E_{γ} : weighted average of 4734 3 from ³³ Ar $\varepsilon + \beta^+$ decay and 4737.6 4 from (p, γ):res.
		5548.0 20	9.5 20	0.0 3	/2+		

[†] From (p,γ) :res, unless otherwise noted. E γ values without uncertainties are deduced by the evaluators from level-energy differences. Mult and δ are from analysis of measured $\gamma(\theta)$ and/or $\gamma\gamma(\theta)$; magnetic or electric nature is determined based on RUL and measured $T_{1/2}$ or width where available.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. [#] Placement of transition in the level scheme is uncertain.

9

 $^{33}_{17}\text{Cl}_{16}$ -9

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

11

 $^{33}_{17}\text{Cl}_{16}$ -11

From ENSDF

 $^{33}_{17}\text{Cl}_{16}$ -11