9 Be(34 Si, 33 Al γ) **2017Mu05,2015MuZY**

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen and Balraj Singh	NDS 199,1 (2025)	30-Sep-2024						

Includes charge-exchange reaction ⁹Be(³⁴Si, ³⁴Al), followed by emission of neutron (2015MuZY).

First experimental evidence for a depletion of central density of protons or a bubble structure in 34 Si. This work also calls for a significant revision of the decay scheme of 33 Mg β^- decay to 33 Al, as proposed by 2008Tr07.

2017Mu05 (also 2015MuZY: thesis by the same first author): ³⁴Si beam was produced in ⁹Be(⁴⁸Ca,X) with E=140 MeV/nucleon ⁴⁸Ca primary beam provided from NSCL at MSU on a 846 mg/cm² ⁹Be target. Fragments were separated by A1900 fragment separator. The secondary target was 100 mg/cm² ⁹Be. γ rays were detected using the GRETINA array; charged particles were analyzed by energy-loss measurement in an ionization chamber located at the focal plane of the S800 magnetic spectrograph. Measured Eγ, Iγ, (³³Al)γ-coin, γγ-coin, longitudinal-momentum distributions. Deduced levels, J, π, L-transfers from analysis by eikonal method, spectroscopic factors, and proton occupancies. Proton and neutron density contours calculated using relativistic Hartree-Fock-Bogoliubov calculations with PKO2 interaction. Levels at 1838, 2585, 2787, 3284, 3472, 4046, and 4085 keV, populated in ³⁴Si to ³⁴Al charge-exchange reaction followed by one-neutron emission from ³⁴Al are reported only by 2015MuZY.

³³Al Levels

Level populations under comments are from 2017Mu05, unless otherwise noted.

E(level) [†]	$J^{\pi \ddagger}$	L#	Normalized C ² S [@]	Comments
0	5/2+	2 a	4.6 9	Level population=77.5% 22.
1622 4	(5/2+)	2 ^a	0.19 7	$C^2S(exp)/C^2S(theory)=0.42$ & (2015MuZY). Level population=2.8% 9. $C^2S(exp)/C^2S(theory)=0.39$ & (2015MuZY).
1651 4	(5/2+)	2 ^a	0.9 2	Level population=13.8% 20. $C^2S(exp)/C^2S(theory)=0.39 \ 8 \ (2015MuZY)$.
1840 <mark>&</mark> 4				Level population=1.9% 8 (2015MuZY).
2101 5	(1/2+)	0 b	0.08 3	Level population= 1.5% 4. $C^2S(\exp)/C^2S(\operatorname{theory})=0.45$ 9 (2015MuZY).
2366? 6				Tentative (2017Mu05).
2587 ^{&} 4 2667 5				Level population=2.2% 5 (2015MuZY). Level population=0.3% 1.
2696 5				Level population=0.3% 1.
2787 <mark>&</mark> 7				Level population=1.3% 4 (2015MuZY).
2817 5				Level population=0.2% 1.
3191 5				Level population=0.5% 3.
3284 & 7				Level population=0.3% 2 (2015MuZY).
3474 <mark>&</mark> 5				Level population=0.5% 3 (2015MuZY).
3702 5	$(1/2^+)$	0 b	0.08 2	Level population= 1.4% 3. $C^2S(exp)/C^2S(theory)=0.48$ 10 (2015MuZY).
3927 7	(3/2+)	2	0.11 2	Level population=1.4% 3. Interpreted as proton knockout from the $1d_{3/2}$ orbit. $C^2S(\exp)/C^2S(\text{theory})=0.36\ 7\ (2015MuZY)$.
4047 <mark>&</mark> 7				Level population=0.7% 1 (2015MuZY).
4087 ^{&} 5				Level population=0.8% 2 (2015MuZY).

 $^{^{\}dagger}$ From a least-square fit to γ -ray energies.

[‡] From 2017Mu05 based on deduced L-transfer and proposed proton orbital.

[#] Proposed by 2017Mu05, based on measured longitudinal-momentum distributions and analysis by eikonal method, unless otherwise noted.

⁹Be(³⁴Si, ³³Alγ) **2017Mu05,2015MuZY** (continued)

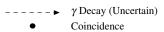
³³Al Levels (continued)

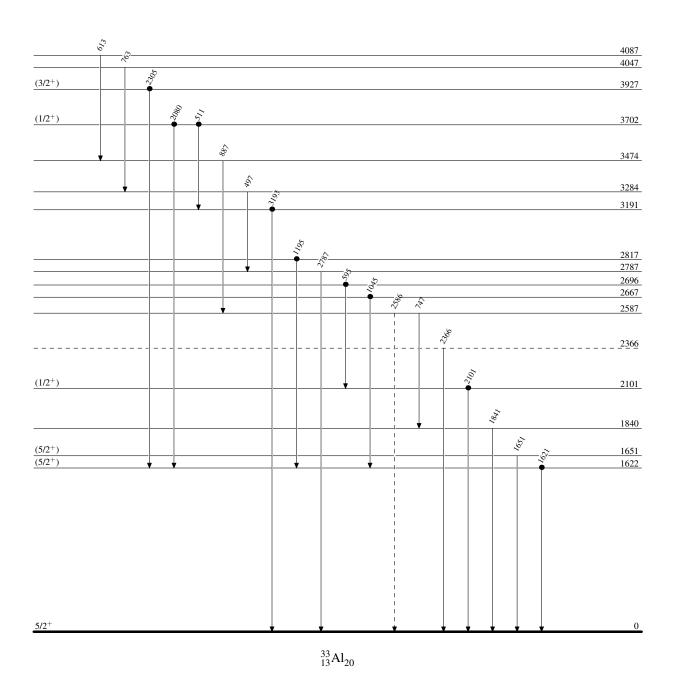
- [®] Values are extracted from measured cross sections in 2017Mu05, unless otherwise noted. Summed spectroscopic factor for 1st three L=2 states=5.7 *10*, in agreement with 6 expected for full occupancy of the $1d_{5/2}$ orbit. In comparison, summed spectroscopic strength for L=0 states of 2101 and 3704 keV is 0.17 *3* (this value would only increase by 0.07 *3* if the unassigned and weakly populated states of 2666, 2696, 2816 and 3193 keV were all assumed as L=0). A small (≈8%) proton occupancy of the $2s_{1/2}$ orbital or about 10% of that in ³⁶S, reflects a large depletion of the central density of protons in ³⁴Si.
- & Level reported in 2015MuZY, interpreted by authors as populated in ³⁴Si to ³⁴Al charge-exchange followed by one-neutron emission, while all the other levels as reported in 2017Mu05 (also 2015MuZY) are populated through one-proton removal from ³⁴Si. The distinction between the two sets of states is made by 2015MuZY from deduced shift of centroid of these momentum distributions towards low momentum.
- ^a Interpreted as proton knockout from the 1d_{5/2} orbit.
- ^b Interpreted as proton knockout from the 2s_{1/2} orbit.

$\gamma(^{33}Al)$

E_{γ}^{\dagger}	$E_i(level)$	\mathtt{J}_{i}^{π}	E_f	\mathbf{J}_f^{π}	Comments
497 <i>1</i>	3284		2787		
511 2	3702	$(1/2^+)$	3191		
595 2	2696		2101	$(1/2^+)$	E_{γ} : 596 γ in 2008Tr07, but placed from a 4310 level.
613 2	4087		3474		
747 2	2587		1840		
763 2	4047		3284		
887 2	3474		2587	(# IS 1)	T 4046 1 2000T 0T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1045 3	2667		1622	$(5/2^+)$	E_{γ} : 1046 γ in 2008Tr07, but placed from a 4310 level.
1195 3	2817	(F/0+)	1622	$(5/2^+)$	E . 1610 :- 2000T-07 1617 :- 2006 A-7W
1621 4	1622	$(5/2^+)$	0	5/2 ⁺	E _γ : 1618 in 2008Tr07, 1617 in 2006AnZW.
1651 <i>4</i>	1651	$(5/2^+)$	U	5/2+	E_{γ} : 1646 in 2006AnZW; 1647 in 2008Tr07, but placed from a 3264 level.
^x 1838 [‡] 5					E_{γ} : From γ singles spectrum in Fig.1a of 2017Mu05. This γ is not assigned to 33 Al by 2017Mu05 as authors state that it is not produced by the one-proton removal, with no further argument. But a 1838 γ was also reported by 2008Tr07 and 2006AnZW in 33 Mg β^- decay as a ground-state transition and a 1838.6 γ was assigned to 33 Al by 2006FuZX in He(33 Al, 33 Al γ). Therefore, the evaluators consider that the possibility of this 1838 γ belonging to 33 Al cannot be ruled out, with its existence and placement questionable.
1841 5	1840		0	$5/2^{+}$	
2080 5	3702	$(1/2^+)$	1622	$(5/2^+)$	
2101 5	2101	$(1/2^+)$	0	5/2+	E_{γ} : 2096 in 2006AnZW; 2096 also in 2008Tr07, but placed from a 3714 level.
2305 6	3927	$(3/2^+)$	1622	$(5/2^+)$	F 2265 : 2000T 05
2366 6	2366?		0	5/2+	E_{γ} : 2365 γ in 2008Tr07.
2586 [‡] 7	2587		0	5/2+	
2787 7	2787		0	5/2+	
3193 8	3191		0	$5/2^{+}$	

[†] Quoted uncertainty is systematic uncertainty of 0.25% estimated by 2017Mu05 on the energy centroid. No statistical uncertainty is given or explained in 2017Mu05. It is assumed by the evaluators that the total uncertainty is dominated by the large systematic uncertainty.


[‡] Placement of transition in the level scheme is uncertain.


 $^{^{}x}$ γ ray not placed in level scheme.

Legend

⁹Be(³⁴Si,³³Alγ) 2017Mu05,2015MuZY

Level Scheme

3