³²Alβ⁻ decay (32.3 ms) 1986Du07,1984Gu19,1982Mu08

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024			

Parent: ³²Al: E=0; $J^{\pi}=1^+$; $T_{1/2}=32.3$ ms 4; $Q(\beta^-)=12978$ 7; $\%\beta^-$ decay=100

 32 Al-J^{π},T_{1/2}: From Adopted Levels of 32 Al.

 32 Al-Q(β^{-}): from 2021Wa16.

 32 Al- $\%\beta^{-}$ decay: $\%\beta^{-}$ n=0.7 5 for 32 Al decay (2008ReZZ,1995ReZZ).

1986Du07: ³²Al source was produced by fragmentation of 60 MeV/nucleon ⁴⁰Ar beam on a 190 mg/cm² Be target, separated by the LISE spectrometer, and implanted into a thin movable film. β particles were detected with a plastic scintillator and γ rays were detected with a Ge detector. Measured E γ , I γ , $\beta\gamma$ -coin, $\beta\gamma$ (t). Deduced parent T_{1/2}.

1984Gu19: ³²Al source was produced by fragmentation of a 30 g/cm² iridium target by 10 GeV protons from the CERN synchrotron, separated by a mass spectrometer, and transported into a thin stainless steel tube. γ rays were detected with Ge(Li) detectors and delayed-neutrons were detected with a ³He proportional counter. Measured E γ , I γ . Deduced levels, β -decay and γ -ray emission probabilities.

1982Mu08: identified ³²Al isotope and measured $T_{1/2}$ at LBL.

Others: measured T_{1/2}: 2017Ha23, 2005Ue01, 2008ReZZ (1995ReZZ).

From RADLIST code, the total energy released is 12990 keV 150, compared with 12887 keV 65 from Q-value=12978 7 and branching of 99.3% for population of levels in 32 Al by β^- decay.

Placements of γ transitions are based on those in Adopted Levels, Gammas. No decay scheme is given in 1986Du07.

This decay scheme is considered incomplete due to a large gap between the highest observed level at E=5786 and the O-value=12978 7 (2021Wa16). $S(n)=9200.0 \ 3$ and $S(2n)=15787.36 \ 30 \ (2021Wa16)$ for ³²Si.

³²Si Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	0^{+}	157 y 7	
1941.44 <i>30</i>	2^{+}	0.57 ps 9	
4230.8 8	2+	0.26 ps 9	
4983.9 11	0^{+}	≤0.30 ps	
5785.7 15	$(0,1,2)^+$	≥0.83 ps	
9200.0+x			E(level): x<3778 7 from Q(β^{-})(³² Al)-S(n)(³² Si), where Q(β^{-})=12978 7 and S(n)=9200.0
			3 from 2021Wa16. This represents a range of unobserved levels that subsequently decay
			to ³¹ Al via one-neutron emission.

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Iβ ^{-†‡}	$\log ft^{\dagger}$	Comments
$(1.9 \times 10^{3\#} 19)$	9200.0+x	0.7 5		$I\beta^-$: from adopted $\%\beta^-$ n=0.7 5 for ³² Al decay (2008ReZZ,1995ReZZ).
(7192 7)	5785.7	1.7 4	4.8	av E β =3360.4 35
(7994 7)	4983.9	4.3 6	4.6	av $E\beta = 3756.0 \ 35$
				$I\beta^{-1}$: other: 12 3 (1984Gu19).
(8747 7)	4230.8	3.0 5	5.0	av E β =4129.7 35
(11037 7)	1941.44	4.7 8	5.3	av E β =5260.0 35
				$I\beta^{-1}$: other: 3 4 (1984Gu19).
(12978 7)	0.0	86.3 7	4.34	av E β =6217.8 35
				$I\beta^{-1}$: from 100– $\Sigma I\beta$ (excited levels), assuming no missing/unobserved feedings.
				But due to the incomplete decay scheme, there could be unobserved γ
				feedings from possible levels within the gap between the highest observed
				level and the Q-value. Other: 85 5 deduced by 1984Gu19 in the same way

Continued on next page (footnotes at end of table)

 $^{32}\mathrm{Al}\,\beta^{-}$ decay (32.3 ms) 1986Du07,1984Gu19,1982Mu08 (continued)

β^{-} radiations (continued)

E(decay) E(level) Comments

using their measured γ -ray intensities. Despite possible missing feedings, the β -feeding to g.s. is considered strong.

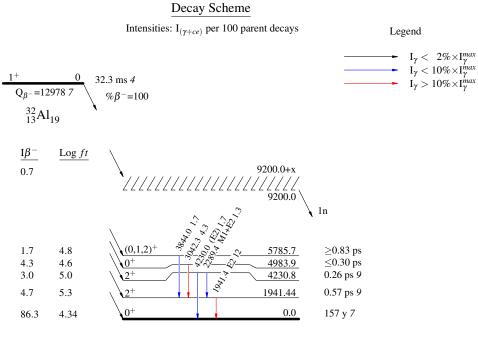
 $^{\dagger}\beta$ intensity from γ intensity balance at each level, unless otherwise noted. Quoted values should be considered as approximate due to incomplete decay scheme.

[‡] Absolute intensity per 100 decays.

[#] Estimated for a range of levels.

 $\gamma(^{32}\text{Si})$

Iy normalization: From absolute Iy(1941.4y)=12.0% 5, determined in 1984Gu19 from measured counts of 1941.4y transitions and ³²Al decays.


E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	δ#	α^{\dagger}	Comments
1941.4 3	100	1941.44	2+	0.0 0+	E2		0.000293 4	$\begin{aligned} &\alpha(\mathrm{K}) = 7.28 \times 10^{-6} \ 10; \\ &\alpha(\mathrm{L}) = 5.19 \times 10^{-7} \ 7; \\ &\alpha(\mathrm{M}) = 3.42 \times 10^{-8} \ 5 \\ &\alpha(\mathrm{IPF}) = 0.000286 \ 4 \\ &\%_{\mathrm{I}\gamma} = 12.0 \ 5 \\ &\mathrm{E}_{\gamma}: \ \mathrm{from} \ 1984\mathrm{Gu} 19. \ \mathrm{Other} \\ &\mathrm{E}_{\gamma} = 1941.4 \ 5 \ (1986\mathrm{Du} 07). \end{aligned}$
2289.4 8	11 3	4230.8	2+	1941.44 2+	M1+E2	-0.84 44	0.000406 24	$\alpha(K)=5.15\times10^{-6} \ 14;$ $\alpha(L)=3.67\times10^{-7} \ 10;$ $\alpha(M)=2.42\times10^{-8} \ 6$ $\alpha(IPF)=0.000401 \ 24$ %Iy=1.3 4
3042.3 10	36 5	4983.9	0+	1941.44 2+				$\%_{1\gamma}$ =4.3 6 E_{γ} : weighted average of 3042.6 <i>12</i> (1984Gu19) and 3042.1 <i>10</i> (1986Du07). I_{γ} : other: 74 <i>20</i> (1984Gu19). Additional information 1.
3844.0 <i>15</i> 4230.0 <i>15</i>	14 <i>3</i> 14 <i>3</i>	5785.7 4230.8	$(0,1,2)^+$ 2 ⁺	$\begin{array}{ccc} 1941.44 & 2^+ \\ 0.0 & 0^+ \end{array}$	(E2)			%Iy=1.7 4 %Iy=1.7 4

[†] Additional information 2.
[‡] From 1986Du07, unless otherwise stated.

[#] From Adopted Gammas.

[@] For absolute intensity per 100 decays, multiply by 0.120 5.

32 Al β^- decay (32.3 ms) 1986Du07,1984Gu19,1982Mu08

 $^{32}_{14}{\rm Si}_{18}$