³⁶K εα decay (341 ms) 1996II02,1980Es01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024

Parent: ³⁶K: E=0.0; $J^{\pi}=2^+$; $T_{1/2}=341$ ms 3; $Q(\epsilon \alpha)=6173.4$ 3; $\% \epsilon \alpha$ decay=0.0031 5

 $^{36}\text{K-J}^{\pi}, T_{1/2}$: From Adopted Levels of ^{36}K in ENSDF database (2012 update).

 36 K-Q($\epsilon \alpha$): Deduced from mass excesses of 36 K, 32 S and 4 He from 2021Wa16.

³⁶K-%εα decay: %εα=0.0031 5 from Σ [%I(α)] in 1996II02. Other: 0.0034 5 from Σ [%I(α)] in 1980Es01.

1996II02 (also 1997II03): ³⁶K from spallation on CaO with 500 MeV protons from the TRIUMF cyclotron. Silicon surface barrier detector, microchannel plate in back-to-back geometry. Measured α and proton groups.

1980Es01: ³⁶K from ³⁶Ar(p,n) reaction on ³⁶Ar implanted in Al foils with 20 MeV protons from University of Jyvaskyla MC-20 cyclotron. Fast tape He-jet transport system. Silicon surface barrier detectors measured α and proton groups. Others: 1986Ho35, 1980Ew01.

³²S Levels

E(level)	J^{π}
0.0	0^{+}

Delayed Alphas (³²S)

All data from 1996II02, except for 4443-keV level.

Ε(α)	E(³² S)	$I(\alpha)^{\dagger\ddagger}$	E(³⁶ Ar)	Comments
1522 3	0.0	5×10 ⁻⁵ 1	8352	
1562 3	0.0	$2.4 \times 10^{-5} 8$	8397	
1963 <i>3</i>	0.0	6×10 ⁻⁵ 2	8847	
2016 3	0.0	0.0015 4	8907	Other: $E(\alpha)=2015 5$, $\% I(\alpha)=0.0015 5$ (1980Es01).
2229 <i>3</i>	0.0	$1.5 \times 10^{-4} 4$	9147	Other: $E(\alpha)=2213 \ 10, \ \% I(\alpha)=0.00044 \ 18 \ (1980Es01).$
2419 <i>3</i>	0.0	$1.1 \times 10^{-5} 3$	9360	Other: $E(\alpha)=2430\ 15,\ \% I(\alpha)=3\times 10^{-5}\ 2\ (1980Es01).$
2513 <i>3</i>	0.0	8×10 ⁻⁶ 3	9467	Other: $E(\alpha)=2553 \ 15, \ \% I(\alpha)=2\times 10^{-5} \ 2 \ (1980Es01).$
2727 3	0.0	0.0010 3	9708	Other: $E(\alpha)=2725 5$, %I(α)=0.0010 4 (1980Es01).
2982 <i>3</i>	0.0	8×10 ⁻⁶ 2	9994	
3170 <i>3</i>	0.0	$1.1 \times 10^{-5} 4$	10205	Other: $E(\alpha)=3146\ 15,\ \% I(\alpha)=2\times 10^{-5}\ 2\ (1980Es01).$
3278 <i>3</i>	0.0	4×10^{-5} 1	10327	Other: $E(\alpha)=3271 \ 15, \ \% I(\alpha)=3\times 10^{-5} \ 2 \ (1980Es01).$
3385 <i>3</i>	0.0	2.6×10^{-5} 7	10447	Other: $E(\alpha)=3375 \ 15, \ \% I(\alpha)=6\times 10^{-5} \ 3 \ (1980Es01).$
3487 <i>3</i>	0.0	$1.1 \times 10^{-4} 3$	10562	Other: $E(\alpha)=3479\ 15,\ \% I(\alpha)=1.1\times 10^{-4}\ 5\ (1980Es01).$
3518 <i>3</i>	0.0	6×10 ⁻⁵ 2	10597	Other: $E(\alpha)=3516\ 15,\ \% I(\alpha)=8\times 10^{-5}\ 4\ (1980Es01).$
3613 4	0.0	4×10 ⁻⁶ 2	10704	
3748 <i>3</i>	0.0	$1.7 \times 10^{-5} 5$	10856	
3849 <i>4</i>	0.0	3.5×10 ⁻⁶ 15	10969	
3926 <i>3</i>	0.0	$2.8 \times 10^{-5} 8$	11056	Other: $E(\alpha)=3922 \ 15, \ \%I(\alpha)=4\times10^{-5} \ 2 \ (1980Es01).$
4086 4	0.0	6×10 ⁻⁶ 2	11236	
4443 ^{#} 20	0.0	$4 \times 10^{-5} 2$	11639	$E(\alpha),I(\alpha)$: from 1980Es01, but not confirmed in 1996II02.

[†] From 1996II02, unless otherwise noted. Values are also available in 1980Es01 but less complete and they are given under comments. Absolute intensities $\% I(\alpha)$ in 1996II02 and 1980Es01 are determined by authors relative to % I(p)=0.33 9 of E(p)=970 proton group, which is determined by 1980Es01 relative to $\% I\gamma=79$ 8 of 1970 γ in ³⁶Ar from ³⁶Ar ε decay reported in 1972Mi13.

[‡] Absolute intensity per 100 decays.

[#] Placement of transition in the level scheme is uncertain.

³⁶K εα decay (341 ms) 1996II02,1980Es01

Decay Scheme

 $I(\alpha)$ Intensities: $I(\alpha)$ per 100 parent decays

