⁹Be(³³Na,³²Neγ) 2019Mu03

History							
Type Author		Citation Literature Cutoff D					
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024				

Includes ${}^{9}\text{Be}({}^{34}\text{Mg}, {}^{32}\text{Ne}\gamma)$.

2019Mu03: ³³Na and ³⁴Mg cocktail beams with midtarget E=221 and 235 MeV/nucleon, respectively, are produced by projectile fragmentation of a 345 MeV/nucleon primary beam of ⁴⁸Ca from the RIBF at RIKEN, on a 15-mm-thick rotating Be target. Fragments were separated by the BigRIPS separator and identified by tof-B ρ - Δ E method. The secondary target was 1032 mg/cm² solid Be. Reaction products were analyzed and identified with the ZeroDegree spectrometer. γ rays were detected with the DALI2 spectrometer consisting of 186 NaI(Tl) crystals surrounding the target. Measured E γ , I γ , $\gamma\gamma$ -coin, cross sections. Deduced levels, J, π , R_{4/2}. Comparisons with shell-model and eikonal reaction dynamical calculations.

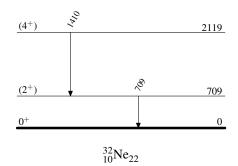
³²Ne Levels

 σ_{-1p} and σ_{-2p} in comments denote one-proton and two-proton knockout cross sections for (³³Na,³²Ne) and (³⁴Mg,³²Ne), respectively. The inclusive cross sections are σ_{-1p} =4.3 mb 5 and σ_{-2p} =144 μ b 15.

Note that in Table II and the text, the authors refer to the one-proton knockout cross section as ⁹Be(³³Mg,³²Ne) which is a typo as confirmed by second author in an email reply to the evaluator on March 4, 2019.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0	0^{+}	$\sigma_{-1p}=1.4 \text{ mb } 7, \sigma_{-2p}=97 \ \mu b \ 14.$
709 12	(2^{+})	$\sigma_{-1p}=2.2 \text{ mb } 6, \sigma_{-2p}=24 \ \mu b \ 9.$
2119 19	(4^{+})	$\sigma_{-1p} = 0.72 \text{ mb } 3, \sigma_{-2p} = 23 \ \mu \text{b} 5.$

[†] From $E\gamma$.


[‡] As given in 2019Mu03 for excited states, based on systematics of neighboring even-even nuclei of Si, Mg and Ne, and theoretical predictions.

$\gamma(^{32}\text{Ne})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π
709 <i>12</i>	709	(2^+)	0	$\frac{0^{+}}{(2^{+})}$
1410 <i>15</i>	2119	(4^+)	709	

⁹Be(³³Na,³²Neγ) 2019Mu03

Level Scheme

