Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024

 $Q(\beta^{-})=10270 \ 8$; $S(n)=5778 \ 4$; $S(p)=20364 \ 14$; $Q(\alpha)=-1.455\times 10^{4} \ 13 \ 2021$ Wa16

S(2n)=8090 4, S(2p)=38690 250, $Q(\beta^{-}n)=6050 4$ (2021Wa16).

This nuclide is central and of prime relevance in the 'island of inversion' at or near N=20 semi-closed shell.

Mass measurements: 2013Ch49, 2006Ga04 (also 2006Lu09), 2001Lu20, 1991Zh24, 1991Or01, 1987Gi05, 1986Vi09, 1983De04. Other measurements:

1979Sy01: first identification of 32 Mg in 12 C(40 Ar,X) reaction at 205 MeV/nucleon, deduced evidence for particle stability.

1983De04, 1984Gu19: identification and mass excess measurement in Ir(p,X) E=10 GeV.

1984La03: first study of decay characteristics and half-life measurement.

2004Gr08: ³²Mg formed in fragmentation of ³⁶S beam with ⁹Be target at GANIL facility using LISE3 spectrometer. Measured isotopic half-life and delayed-neutron probability.

2011Ka01: E=900 MeV/nucleon secondary ³²Mg beam from Be(⁴⁸Ca,X) reaction. Target=CH₂. Fragment separator at GSI facility. Measured interaction cross sections by detecting unreacted Mg particles by B ρ - Δ E-tof method. Deduced matter radius by Glauber model analysis. Comparison with HF and RMF predictions. Interaction σ =1331 mb 24 for Carbon and 523 mb 47 for Hydrogen.

RMS radii: 1998Su07 (also 1997Su04), 2006Kh08, 2011Ka01.

Yield and cross sections: 2001Pe14, 1997Ta22.

Structure calculations:

2021In02,2021Ku13,2021Ta32,2016Su20: calculated deformation parameter.

2020Mi15: calculated levels, S(2n), B(E2).

2020Ts03,2019Sa23,2018Va09,2017De15,2016Ma10,2016Po03,2015Me06: calculated level, J, π, B(E2).

2016Ma73: calculated the first three 0^+ levels.

Additional information 1.

³²Mg Levels

Cross Reference (XREF) Flags

A B C D E	³² Na β ⁻ decay (13.2 ms) ³³ Na β ⁻ n decay (8.0 ms) ³⁴ Na β ⁻ 2n decay (5.5 ms) ¹ H(³² Mg, ³² Mg'γ) ³ H(³⁰ Mg,pγ)	F G H J	${}^{4}\text{He}({}^{32}\text{Mg},{}^{32}\text{Mg'}\gamma)$ ${}^{9}\text{Be}({}^{33}\text{Mg},x\gamma)$ ${}^{9}\text{Be}({}^{34}\text{Si},x\gamma)$ ${}^{9}\text{Be}({}^{36}\text{S},X\gamma),({}^{48}\text{Ca},X\gamma)$ ${}^{9}\text{Be}({}^{46}\text{Ar},x\gamma)$	K L M N	${}^{12}C({}^{32}Mg,{}^{32}Mg'\gamma)$ ${}^{12}C({}^{33}Mg,{}^{32}Mg\gamma)$ ${}^{28}Si({}^{32}Mg,{}^{32}Mg'\gamma)$ Coulomb excitation
$T_{1/2}^{\#}$	XREF			Comm	ents

E(level)	J^{π}	$T_{1/2}^{m}$	XREF	Comments
0.0	$\overline{0^+}$	80.4 ms 4	ABCDEFGHIJKLMN	$\%\beta^{-}=100; \ \%\beta^{-}n=5.5 \ 5 \ (2004Gr08)$
				$\%\beta$ n: other: 2.4 5 (1984La03).
				$T_{1/2}$: from implant- β (t) in 2017Ha23. Others: 86 ms 5 (2004Gr08), 120 ms
				20 (1984La03) and 85 ms 13 (1995ReZZ).
				$(r^2)^{1/2}=3.1863 \text{ fm } 10 \text{ (stat) } 161 \text{ (syst) } (2012Yo01), 3.14 \text{ fm } 7 \text{ (1998Su07)}.$
				$\delta < r^2 > ({}^{26}Mg, {}^{32}Mg) = +0.948 \text{ fm}^2 6 \text{ (stat) } 101 \text{ (syst) } (2012Yo01).$
				rms matter radius= $3.17 \text{ fm } 11 \text{ (2011Ka01)}$.
				Mean square reduced strong absorption radius=1.196 fm ² 11 (2006Kh08) in
				Si(³² Mg,X) reaction at E=49.04 and 42.81 MeV/nucleon, also measured energy-integrated cross sections.
				Ground state configuration compared with that of 30 Ne in 9 Be(32 Mg 30 Ne)
				experiment (2010Fa04), where 4p4h component in 30 Ne g.s. is found to be
				higher than in ³² Mg g.s.
885.30 10	2^{+}	13.1 ps 10	ABCDEFGHIJK MN	B(E2)↑=0.0440 51
				XREF: M(860)
				$B(E2)\uparrow$: from Coulomb excitation.

Adopted Levels, Gammas (continued)

³²Mg Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\#}$		XREF	Comments
					J ^π : L(p,p')=2 (inverse kinematics); Coulomb excitation from 0 ⁺ . Also systematics of even-A Mg isotopes. T _{1/2} : others: 16 ps 4 from βγγ(t) in ³² Na β ⁻ decay (2005Ma96,2005Ma81, preliminary result); 11.8 ps +16-13 from B(E2)↑=0.0440 51;
1050 5	0+	17 ns 10	H	E H	J ^π : L(t,p)=0 in ³ H(³⁰ Mg,p). T _{1/2} : from 10 ns< τ <38 ns given in 2019E109 in ⁹ Be(³⁴ Si,Xγ). The lower limit of τ is taken from 2010Wi11, which is estimated from GEANT4 simulations. 2019E109 also deduce a lower limit of 8 ns from distribution of decay positions and 1.5 ns from the correlation between partial cross-section and lifetime for this 0 ⁺ state, which also gives the upper limit τ <38 ns, based on 0.03 mb< σ (0 ⁺)<0.10 mb with the upper limit of σ from 2003Ba52.
2288.3 20	$(0^+, 2^+)^{\ddagger}$			GH	
2321.82 30	4+	0.62 ps 15	AB D	FGHIJ MN	J^{π} : L(p,p')=4 (inverse kinematics).
2551.23 28	$(1^-,2^+)^{\ddagger}$		AB D	GHJL	J^{π} : also 2550.8 γ to 0 ⁺ , giving (1,2 ⁺).
2846.4 30	$(0^+, 2^+)^{\ddagger}$			GH	
2858.9 4	$(1^{-}, 3^{-})$		AB D	GH J	J^{π} : L(p,p')=(1,3) (inverse kinematics).
3037.76 14	$(2^{-})^{\ddagger}$		AB	GH L	J^{π} : also 2152.4 γ to 2 ⁺ ; possible allowed β feeding from (3 ⁻).
3123.4 30	$(3^{-},4^{+})$		D	GH J	J^{π} : L(p,p')=(3,4) (inverse kinematics).
3480 4	(2 ⁺)		D	GH L	J^{π} : L(p,p')=(1,2) (inverse kinematics); (2 ⁺) from momentum distributions in ⁹ Be(³³ Mg,X γ).
3553.0 5	(3 ⁻ ,4 ⁻)		A D	GH	J^{π} : from shell-model predictions in 2008Tr04 in ³² Na β^{-} decay.
3678 <i>4</i> 3945.9 <i>30</i>	$(2^+,4^+)^{\ddagger}$			GH GH	
4094.9 30	$(6^+)^{\ddagger}$			GH J	
4154 5	$(4^+)^{\ddagger}$			GH	
4217 13	$(3^{-},4^{+})$		D		J^{π} : L(p,p')=(3,4) (inverse kinematics).
4707 4	$(4^+)^{\ddagger}$			GH	
4784.7 7	()		Α	L	
4820.0 4	(2 ⁻ ,3 ⁻)		A	GH L	J ^{π} : 3934.5 γ to 2 ⁺ ; possible allowed β feeding from (3 ⁻). Also from shell-model predictions in 2008Tr04 in ³² Na β ⁻ decay.
4919 <i>4</i>	$(2^+, 4^+)$			GH	J^{π} : $(0^+, 2^+, 4^+)$ from ⁹ Be $(^{33}Mg, X\gamma)$ based on measured momentum distributions: 1796 γ to $(3^-, 4^+)$ disfavors 0^+ .
5168 23	$(2^+, 3^-)$		D		J^{π} : L(p,p')=(2,3) (inverse kinematics).
5205 16	$(2^+, 3^-)$		D		J^{π} : L(p,p')=(2,3) (inverse kinematics).
5233 4	$(4^+)^{\ddagger}$			GH	

[†] From a least-squares fit to γ -ray energies. [‡] Proposed by 2022Ki08 in ${}^{9}Be({}^{33}Mg,X\gamma)$, based on measured momentum distributions. [#] From RDDS in ${}^{9}Be({}^{34}Si,X\gamma)$ (2021El06), unless otherwise noted.

 $\gamma(^{32}Mg)$

$$\frac{E_{i}(\text{level})}{885.30} = \frac{J_{i}^{\pi}}{2^{+}} = \frac{E_{\gamma}^{\ddagger}}{885.3} \frac{I_{\gamma}^{\ddagger}}{100} = \frac{E_{f}}{0.0} \frac{J_{f}^{\pi}}{0^{+}} = \frac{Mult.}{[E2]} = \frac{\alpha^{\dagger}}{2.82 \times 10^{-5} 4} = \frac{\alpha^{\dagger}}{\alpha(\text{K}) = 2.64 \times 10^{-5} 4; \alpha(\text{L}) = 1.697 \times 10^{-6} 24; \alpha(\text{M}) = 6.28 \times 10^{-8}}{\frac{9}{2}}$$

B(E2)(W.u.)=15 3

 E_{γ} : weighted average of 885.0 5 from ³²Na β^- decay, 885.3

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ ⁽³²Mg) (continued)

E _i (level)	\mathbf{J}_i^π	E _γ ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	α^{\dagger}	Comments
								<i>I</i> from ³³ Na β ⁻ n decay, 887 7 from (³² Mg, ³² Mg'γ), 885 <i>15</i> from (³⁶ S,Xγ), 886 <i>4</i> from (⁴⁶ Ar,Xγ), and 885 <i>9</i> Coulomb excitation. Other: 860 <i>50</i> from (³² Mg, ³² Mg'γ); 883.9 <i>3</i> from (³² Mg, ³² Mg'γ) is discrepant.
1050	0+	165 5	100	885.30	2+	[E2]	0.0102 14	$\alpha(K) = 0.0096 \ 13; \ \alpha(L) = 0.00062 \ 8; \ \alpha(M) = 2.26 \times 10^{-5} \ 30 \ E_{\gamma}, I_{\gamma}: \ \text{from } {}^{9}\text{Be}({}^{33}\text{Si}, X\gamma). \ \text{Other:}$
		щ						172 from ${}^{3}H({}^{30}Mg,p\gamma)$.
2288.3	$(0^+, 2^+)$	1403# 2	100	885.30	2+		5	
2321.82	4+	1436.7 3	100	885.30	2+	[E2]	7.52×10 ⁻⁵ 11	$\alpha(K)=8.38\times10^{-6}$ 12; $\alpha(L)=5.38\times10^{-7}$ 8; $\alpha(M)=1.994\times10^{-8}$ 28 $\alpha(IPF)=6.63\times10^{-5}$ 9 E_{γ} : weighted average of 1436.1 5 from ³² Na β^{-} decay, 1437.0 3 from (³² Mg, ³² Mg' γ), 1437.0 3 from (³² Mg, ³² Mg' γ), 1434.9 13 from (³² Mg, ³² Mg' γ), 1437 2 from (³³ Mg,X γ), and 1438 4 from (⁴⁶ Ar,X γ). Others: 1430 15 from (³⁶ S,X γ), 1460 50 from (³² Mg, ³² Mg' γ), and 1438 12 from Carden are provided as 12
2551.23	(1 ⁻ ,2 ⁺)	1665.6 <i>5</i>	38 4	885.30	2+			from Coulomb excitation. E_{γ} : other: 1666 <i>3</i> from (³³ Mg,X γ). I_{γ} : weighted average of 38 <i>6</i> from ³² Na β^- decay and 38 <i>4</i> from (³³ Mg,X γ). Other: 105 <i>12</i> from (³⁴ Si X γ) is discrepant
		2550.8 5	100 7	0.0	0+			$E_{\gamma}: weighted average of 2550.7 5 from 32Na β- decay and 2551 l from 33Na β-n decay. Others: 2551 4 from (33Mg,Xγ). Iγ: from (33Mg,Xγ). Others: 100 9 from 32Na β- decay, 100 l2 from (34Si,Xγ).$
2846.4	$(0^+, 2^+)$	1961 [#] 3	100	885.30	2+			
2858.9	(1-,3-)	1972.9 5	100	885.30	2+			E_{γ} : other: 1973 <i>3</i> from (³³ Mg,X γ).
3037.76	(2 ⁻)	486.1 <i>5</i> 2152.4 <i>1</i>	2.8 6 100 4	2551.23 885.30	(1 ⁻ ,2 ⁺) 2 ⁺			E _γ : from ³³ Na β^- n decay. Others: 2151.7 5 from ³² Na β^- decay, 2152 3 from (³³ Mg,Xγ).
3123.4	(3 ⁻ ,4 ⁺)	2238 [#] 3	100	885.30	2+			E_{γ} : other: 2230 <i>14</i> from (³² Mg, ³² Mg'γ).
3480	(2 ⁺)	2595 [#] 4	100	885.30	2+			E_{γ} : other: 2603 <i>16</i> from (³² Mg, ³² Mg' γ).
3553.0	(3 ⁻ ,4 ⁻)	693.5 5		2858.9	(1 ⁻ ,3 ⁻)			I_{γ} : due to contamination, intensity is not established.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{32}Mg)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
3553.0	(3-,4-)	1231.7 [@] 5		2321.82	4+	E_{γ} : others: 1233 2 from (³³ Mg,Xγ), 1232 <i>11</i> from (³² Mg, ³² Mg'γ).
3678	$(2^+, 4^+)$	2793 [#] 4	100	885.30	2+	
3945.9		1624 [#] 3	100	2321.82	4+	
4094.9	(6 ⁺)	1773 [#] 3	100	2321.82	4+	E_{γ} : other: 1773 4 from (⁴⁶ Ar,X γ).
4154	(4^{+})	3268 [#] 5	100	885.30	2+	
4217	$(3^{-},4^{+})$	1895 <i>13</i>	100	2321.82	4+	E_{γ} : from $({}^{32}Mg, {}^{32}Mg'\gamma)$ only.
4707	(4^{+})	2385 [#] 4	100	2321.82	4+	
4784.7 4820.0	(2 ⁻ ,3 ⁻)	1231.7 [@] 5 1782.7 9 2268.5 5	100 77 <i>17</i> 20.8 25	3553.0 3037.76 2551.23	$(3^{-},4^{-})$ (2^{-}) $(1^{-},2^{+})$	
		3934.5 5	100 7	885.30	2+	E_{γ} : Other: 3934 8 from (³³ Mg,X γ).
4919	$(2^+, 4^+)$	1796 [#] 3	100	3123.4	$(3^{-},4^{+})$,
5168	$(2^+, 3^-)$	4282 23	100	885.30	2+	E_{γ} : from (³² Mg, ³² Mg' γ) only.
5205	$(2^+, 3^-)$	2883 16	100	2321.82	4+	E_{γ} : from $({}^{32}Mg, {}^{32}Mg'\gamma)$ only.
5233	(4 ⁺)	2911 4	100	2321.82	4+	E_{γ} : from (³⁴ Si,X γ).

[†] Additional information 2.
[‡] From ³²Na β⁻ decay, unless otherwise noted.
[#] From ⁹Be(³³Mg,Xγ) (2022Ki08).
[@] Multiply placed.

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

 $^{32}_{12}Mg_{20}$