⁹Be(³⁴Si,xγ) 2022Ki08,2021El06

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024

2022Ki08 (also 2021Ki09): E=94.8 MeV/nucleon ³⁴Si secondary beam was produced via fragmentation of a 140 MeV/nucleon ⁴⁸Ca primary beam from the Coupled Cyclotron Facility at NSCL on a 846 mg/cm² ⁹Be production target. Fragments were separated with the A1900 fragment separator. The secondary target was 375 mg/cm² ⁹Be. Outgoing particles were momentum-analyzed with the S800 magnetic spectrograph and detected with the focal-plane detectors; γ rays were detected with the GRETINA array consisting of 7 modules, with each module housing 4 crystals and each crystal having 36 segments. Measured E γ , I γ , $\gamma\gamma$ -coin, γ -ray yields, momentum distributions. Deduced levels, J, π , spectroscopic factors. Comparisons with shell-model calculations.

- 2021E106: E= 60 MeV/nucleon ³⁴Si secondary beam was produced by fragmentation of a 140 MeV/nucleon ⁴⁸Ca primary beam on a ⁹Be target at NSCL. Fragments were separated with the A1900 fragment separator. The reaction target was 52.9 mg/cm² ⁹Be. Reaction residues were analyzed with the S800 spectrograph. γ rays were detected with the GRETINA array of modules each consisting of four segmented HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, recoil- γ -coin, recoil distances with the TRIPLEX plunger device. Deduced levels, J, π , T_{1/2}, transition strengths. Comparisons with theoretical calculations.
- 2019E109: E=86 MeV/nucleon ³⁴Si secondary beam was produced using a 140 MeV/nucleon ⁴⁸Ca primary beam from the NSCL Coupled Cyclotron facility on a ⁹Be production target. The secondary target was 0.57 g/cm² ⁹Be, placed 72 cm upstream of the center of GRETINA. γ rays were detected with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA) array consisting of 10 HPGe detector modules, with four at 58°, two at 90° and four at 122° relative to beam axis. Reaction products were identified by time-of-flight and energy-loss measurements with the S800 spectrograph. Measured E γ , I γ , $\gamma\gamma$ -coin, particle- γ coin, $\sigma(E\gamma)$. Deduced levels, isomer T_{1/2}, transition strengths. Comparisons with neighboring even-even isotopes.
- 2003Ba52 (also 2004Bb03): E=67.1 MeV/nucleon ³⁴Si beam was produced by fragmentation of 140 MeV ⁴⁰Ar primary beam on a ⁹Be production target. Fragments were separated by the A1900 fragment separator. The reaction target was 375 mg/cm² ⁹Be. Reaction residues were analyzed with the S800 spectrograph and γ rays were detected with the SeGA array of fourteen 32-fold segmented Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, particle- γ -coin, σ (E γ), parallel-momentum distributions. Deduced levels, J, π . Comparisons with theoretical calculations.

³²Mg Levels

 σ_{exp} given under comments are experimental two-proton knockout cross sections from 2022Ki08.

Inclusive cross section σ_{inc} =0.96 mb 8 at E=94.8 MeV/nucleon (2022Ki08), 0.76 mb 10 at E=67.1 MeV/nucleon (2003Ba52). Unplaced σ_{exp} =0.056 mb 6 (2022Ki08).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0	0^{+}		$\sigma_{exp} = 0.275 \text{ mb } 30.$
885.0 10	2+	13.1 ps 10	$\sigma_{\rm exp}$ =0.072 mb 9.
1050 5	0^{+}	17 ns 10	J^{π} : from Adopted Levels.
			$T_{1/2}$: from 10 ns< τ <38 ns given in 2019El09. The lower limit of τ is taken from
			2010Wi11, which is estimated from GEANT4 simulations. 2019El09 also deduce a lower
			limit of 8 ns from distribution of decay positions and 1.5 ns from the correlation between
			partial cross-section and and lifetime for this 0° state, which also gives the upper limit $\pi < 29$ ns, based on 0.02 mb $\sigma = (0^{\pm}) < 0.10$ mb with the upper limit of σ from 2002Pa52
			$R(E_2)^{+}(2^+ t_0, 0^+) = 0.0048 \pm 74.20.(2010E100)$
2288 1 22	$(0, 2)^+$		D(E2) (2 + 10 + 0) = 0.0048 + 74 = 20 (2019E109).
2200.1 22	(0,2)	0.62 ps 15	$\sigma_{exp} = 0.025 \text{ mb } 2.$
2522.1 22	$(1-2^+)$	0.02 ps 15	$\sigma_{\rm exp} = 0.020 \text{ mb}^2$
2550.9 25	(1,2)		$\sigma_{\rm exp} = 0.020$ mb 7.
2040.1 32	(0,2) $(2,2)^{-}$		$\sigma_{exp} = 0.077 \text{ mb} 7.$
2030.7 27	(2,3)		$\sigma_{\rm exp} = 0.000 \text{ mb} 2$
3057.1 32	(2)		$\sigma_{exp} = 0.009 \text{ mb } 2.02 \text{ EV}(c)$
3124.1 32	(3,4')		J": proposed in 2021E106 based on γ -decay pattern.
3480 4	(2)+		$\sigma_{exp} = 0.013 \text{ mb } 3.$ J ^{π} : (1 ⁻ ,2 ⁺) proposed in 2021El06.

Continued on next page (footnotes at end of table)

9 Be(34 Si,x γ) 2022Ki08,2021El06 (continued)

³²Mg Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments					
		$\sigma_{\rm exp}$ =0.044 mb 4.					
3555.1 30	$(3,4)^{-}$	$\sigma_{\rm exp} = 0.006 \text{ mb } 1.$					
3678 4	$(2,4)^+$	$\sigma_{\rm exp} = 0.054 \text{ mb } 5.$					
3946 <i>4</i>		$\sigma_{\rm exp} = 0.009 \text{ mb } 2.$					
4095 4	6+	$\sigma_{\rm exp} = 0.018 \text{ mb } 2.$					
4152.4 28	4+	$\sigma_{\rm exp}$ =0.084 mb 6.					
4707 5	4+	$\sigma_{exp} = 0.063 \text{ mb } 6.$					
4819 8	$(2,3)^{-}$	•					
4920 4	$(2,4)^+$	J^{π} : (0,2,4) ⁺ proposed in 2022Ki08; 1796 γ to (3 ⁻ ,4 ⁺) disfavors 0 ⁺ .					
		σ_{\exp} =0.023 mb 2.					
5233 5	4+	$\sigma_{\rm exp}$ =0.091 mb 8.					
		J^{π} : (2 ⁺ , 3 ⁻) proposed in 2021El06.					

[†] From a least-squares fit to γ -ray energies.

[‡] Proposed in 2022Ki08 based on measured momentum distributions and shell-model predictions, unless otherwise noted. When considered in Adopted Levels, assignments will be placed inside parentheses if there are no strong supporting arguments from other studies. [#] From 2021El06 using recoil distance Doppler-shift method (RDDS), unless otherwise noted.

$\gamma(^{32}Mg)$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
165 5		1050	0+	885.0	2+	[E2]	E_{γ} : from 165 +4(stat)+2(syst) (2019El09). A value of 170 2 is used by 2019El09 for deducing B(E2) \uparrow and it is weighted average of their value and 172 2 from 2010Wi11.
^x 524 1	0.9 1		- 1	-			
885	100 3	885.0	2*	0	0+		 E_γ: rounded value from Adopted Gammas. Values from this study: 885 20 (2003Ba52), 885 (2019El09). I_γ: other: 68 7 relative to observed fragments (2003Ba52).
1233 2	0.8 2	3555.1	$(3,4)^{-}$	2322.1	4+		
1293 [#] 3	1.1 2	4152.4	4+	2858.7	$(2,3)^{-}$		
1403 2	3.5 2	2288.1	$(0,2)^+$	885.0	2+		
1437 2	38.4 12	2322.1	4+	885.0	2+	[E2]	E_{γ} : other: 1430 20 (2003Ba52). I _γ : others: 31 5 (2021El06); 32 10 relative to observed fragments (2003Ba52).
1602 [#] 4	0.8 2	4152.4	4+	2550.9	$(1^{-},2^{+})$		
1624 <i>3</i>	1.3 2	3946		2322.1	4+		
1666 <i>3</i>	1.9 2	2550.9	$(1^{-},2^{+})$	885.0	2+		
1773 <i>3</i>	2.7 2	4095	6+	2322.1	4+		
1796 <i>3</i>	3.4 2	4920	$(2,4)^+$	3124.1	$(3^{-},4^{+})$		
^x 1917 4	1.8 2						
^x 1958 [‡] 4	15 [‡] 3						
1961 3	11.5 6	2846.1	$(0,2)^+$	885.0	2+		
1973 <i>3</i>	1.8 4	2858.7	$(2,3)^{-}$	885.0	2+		
2152 3	1.4 2	3037.1	(2)-	885.0	2+		
2239 3	5.3 3	3124.1	(3 ⁻ ,4 ⁺)	885.0	2+		E_{γ} : weighted average of 2238 <i>3</i> (2022Ki08) and 2241 <i>4</i> (2021E106).
^x 2296 6	1.5 2						ly. onler. 5.5 16 (20212100).
^x 2384 [‡] 4	$10^{\ddagger} 2$						

Continued on next page (footnotes at end of table)

⁹Be(³⁴Si,xγ) 2022Ki08,2021El06 (continued)

$\gamma(^{32}Mg)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
2385 4	9.4 <i>4</i>	4707	4+	2322.1	4^{+}	
2551 4	1.8 2	2550.9	$(1^{-},2^{+})$	0	0^{+}	
2595 4	6.6 4	3480	$(2)^{+}$	885.0	2^{+}	E_{γ}, I_{γ} : other: 2595 6 with $I_{\gamma}=10 3$ (2021El06).
2793 4	8.1 4	3678	$(2,4)^+$	885.0	2^{+}	
2911 4	13.7 5	5233	4+	2322.1	4+	E_{γ} : weighted average of 2908 4 (2022Ki08) and 2915 5 (2021El06). I _{γ} : other: 10 2 (2021El06).
^x 3261 [‡] 12	7 [‡] 2					
3268 5	10.8 4	4152.4	4+	885.0	2^{+}	
^x 3415 7	0.7 2					
3934 8		4819	$(2,3)^{-}$	885.0	2^{+}	
^x 3961 7	1.9 2					
^x 4304 20	0.5 2					
^x 4364 <i>13</i>	1.0 2					

[†] From 2022Ki08, unless otherwise noted. Intensities are relative to $I\gamma(885\gamma)=100$. A 3% systematic uncertainty from efficiency calibration as stated in 2022Ki08 has been added in quadrature by the evaluator for intensities from 2022Ki08.

[‡] From 2021El06. Unplaced transitions are in coincidence with the 885-keV transition. However, as they could populate a higher-lying state which decays to the first 2⁺ state, they are not assigned a position in the level scheme (2021El06).

[#] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{32}_{12}Mg_{20}$ -4

