33 Na β^- n decay (8.0 ms) 2001Nu02

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024			

Parent: ³³Na: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=8.0 \text{ ms } 3$; $Q(\beta^-n)=16.54\times 10^3 45$; $\%\beta^-n \text{ decay}=47.6$

³³Na-J^{π}: Systematics of odd Na nuclides and possible β feeding of (3/2⁺) g.s. of ³³Mg (2004Co29, 2002Ra16, 2021Ko07). 2001Nu02 suggest (3/2⁺, 5/2⁺).

³³Na-T_{1/2}: From 2002Ra16, weighted average of results from three measurements: 7.9 ms 4 (β timing), 8.0 ms 7 (neutron timing) and 8.1 ms 4 (γ timing). Others: 8.0 ms 6 (1984La03), 20 ms 15 (1972Kl04, same lab as 1984La03), 8.2 ms 4 (1981ThZV, same lab as 1984La03), 8.5 ms 4 (1998NoZW, tentative result).

³³Na-Q(β⁻n): 16540 450 from 2021Wa16.

 33 Na- $\%\beta^-$ n decay: $\%\beta^-$ n=47 6, $\%\beta^-$ 2n=13 3 (2002Ra16). Other: $\%\beta^-$ n=52 20, $\%\beta^-$ 2n=12 5 (1984Gu19).

2001Nu02 (also 2002Nu02,2002Ra16): ³³Na source was produced by fragmentation of an UC target with 1.4 GeV protons at CERN/ISOLDE. β particles were detected with a plastic scintillator; γ rays were detected with two Ge counters or a small BaF₂ counter; neutrons were detected with 8 neutron detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, n γ -coin, decay curves. Deduced levels, parent T_{1/2}.

Others:

1984La03,1984Gu19: measured $T_{1/2}$, $E\gamma$, $I\gamma$. Two γ rays reported.

1981ThZV: measured T_{1/2}.

1972K104: measured $T_{1/2}$.

1998NoZW: measured $T_{1/2}$.

1999YoZW: measured T_{1/2}, $\%\beta^-n$ (preliminary report) at 885.5 and 2550.7.

The decay scheme is probably incomplete. Based on results from 2001Nu02, the total absolute intensity of observed transition $(885\gamma+2551\gamma)$ to g.s. amounts to 26% 9 using a multiplying factor of 0.22 8 with relative I γ , which is from the β -n feeding to excited states in ³²Mg, while $\%\beta$ -n(³³Na) is 47 6 from measured β -delayed neutrons. The missing intensity could be accounted for by β -n feeding to g.s. and/or unobserved γ transitions to g.s. from higher levels.

³²Mg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	0+	80.4 ms 4	
885.31 10	2+	13.1 ps <i>10</i>	Neutron feeding from 3780 and 4000 levels in ⁵⁵ Mg, with E(n)=800 60 and 1020 80, respectively (2001Nu02).
2322.35 32	4+	0.62 ps 15	
2551.1 10	$(1^{-},2^{+})$	-	
2858.3 <i>5</i> 3037.79 <i>14</i>	$(1^-, 3^-)$ (2^-)		

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

 $\gamma(^{32}Mg)$

I γ normalization: From % β -n(³³Na)=47 6 and the factor of 0.22 8 for multiplying quoted relative I γ to obtain absolute I γ per 100 ³³Na decays (2001Nu02). The factor 0.22 8 is from 2001Nu02 based on measured ³³Na activity and γ intensities, while absolute I γ values are not explicitly listed in 2001Nu02.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
885.3 1	100	885.31	2+	0.0	0^{+}
1437.0 3	4.7 8	2322.35	4+	885.31	2^{+}
1972.9 5	5.9 10	2858.3	$(1^{-}, 3^{-})$	885.31	2^{+}

Continued on next page (footnotes at end of table)

³³Na β ⁻n decay (8.0 ms) 2001Nu02 (continued)

 γ (³²Mg) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
2152.4 <i>1</i>	10.3 21	3037.79	(2 ⁻)	885.31	2+
2551 <i>1</i>	16.1 17	2551.1	$(1^{-},2^{+})$	0.0	0^{+}

[†] From 2001Nu02. [‡] For absolute intensity per 100 decays, multiply by 0.22 8.

³³Na β^- n decay (8.0 ms) 2001Nu02

Decay Scheme

