1 H(32 Mg, 32 Mg' γ) 2009Ta08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024

2009Ta08: E=46.5 MeV/nucleon ³²Mg beam was produced by fragmentation of a 94 MeV/nucleon ⁴⁰Ar primary beam provided by the K=540 ring cyclotron on a 370 mg/cm² ⁹Be production target at RIKEN. Fragments were analyzed using the RIPS fragment separator and identified using time-of-flight and energy loss measurements taken by two plastic scintillators and a silicon detector. Scattered particles from the reaction were analyzed with the spectrometer TOMBEE and identified using a plastic scintillator, a silicon detector, and a NaI(T1) scintillator array. γ rays were detected using the DALI2 array consisting of 160 NaI(T1) crystals. Measured E γ , I γ , $\gamma\gamma$ -coin, $\sigma(\theta)$. Deduced levels, J, π , L-transfers, deformation parameters. Comparisons with coupled-channel calculations. See also 2006Ta31 with E=57 MeV/nucleon.

Others:

2014Mi09: E=58.9 MeV/nucleon ³²Mg beam was produced by fragmentation of a 63 MeV/nucleon ⁴⁸Ca primary beam with ¹⁸¹Ta and enriched ⁶⁴Ni target foils of 150 μ m and 200 μ m thicknesses, respectively at RFQ-RILAC-CSM-RRC accelerator at RIKEN facility. The fragments were separated and identified by RIPS fragment separator and identified using measurements of magnetic rigidity (B ρ), time-of-flight (tof), and energy loss (Δ E-E). The secondary target was liquid hydrogen (CRYPTA). Scattered particles were analyzed by the TOMBEE spectrometer. γ rays were detected with the DALI2 array of 160 NaI(Tl) crystals. Measured $E\gamma$, I γ , $\gamma\gamma$ -coin, cross section. Deduced deformation parameter from the analysis of measured angle-integrated cross section by coupled-channel calculations. Comparison with shell-model (SDPF-M) calculations, and with previous experimental results.

2012Li45: E≈215 MeV/nucleon (≈190 MeV/nucleon at the center of the target) 32 Mg beam with an intensity of about 10³ particle/s was produced by bombarding a primary beam of 48 Ca at E=345 MeV with an intensity of 2 pnA on a 15-mm-thick Be target at the BigRIPS facility at RIKEN. The fragments were analyzed and separated with the Δ E-B ρ -tof method. The secondary target is a 2.13 g/cm² polyethylene foil. The scattering angles were measured by two parallel-plate avalanche counters (PPAC); scattered particles were analyzed by the ZeroDegree Spectrometer consisting of an ionization chamber and two plastic scintillators; γ rays were detected by the DALI2 array of 177 NaI(TI) scintillators. Measured E γ , I γ , $\sigma(\theta)$. Deduced deformation length and β_2 deformation parameter of the first 2⁺ excited state in 32 Mg from a comparison of measured differential cross-section with the coupled-channel calculations. Comparison with available data.

2002Mo35: E=49.5 MeV/nucleon ³²Mg beam at RIKEN. γ rays were detected with the DALI array of 66 NaI(Tl) crystals. Measured E γ , I γ . Only the first excited state reported.

³²Mg Levels

Deformation parameter $\beta_{\rm L}$ and σ given under comments are from 2009Ta08, unless otherwise noted.

E(level) [†]	\mathbf{J}^{π}	L [‡]	Comments
0	0^{+}		
887 7	2+	2	σ =48 mb 5 (2009Ta08), 40 mb +9-8 (2014Mi09). Total excitation σ =56 mb +9-8 (2014Mi09) including feeding from higher states.
			Deformation parameter $\beta_2 = 0.43$ 3 and 0.48 3 for two optical model potentials (2009Ta08), 0.51 +6-5(stat) 2(syst) (2014Mi09).
			Deformation length δ_2 =1.85 fm 20(stat) 8(syst) (2014Mi09), 1.5 fm <i>l</i> (2012Li45).
2320 12	4+	4	L: 2009Ta08 examined fits to the angular distribution data for $J^{\pi}=0^+,1^-,2^+,3^-$ and 4^+ . Minimum χ^2 is obtained for 4^+ by combining the two-step $0^+ -> 2^+ -> 4^+$ with one-step $0^+ -> 4^+$ excitations. The β_2 was set to 0.43 3. The deformation parameters for the fit are: $\beta_2=0.43$ 3 and $\beta_2=0.418$ J/2 wing CU20 patential and $\beta_2=0.47$ 2 and $\beta_2=0.42$ J/2 wing CU20 patential
			β_4 =0.118 15 using KD02 potential and β_2 =0.47 5 and β_4 =0.126 15 using CH89 potential.
2551 1 10	(1- 2+)	#	
2551.1 10	$(1,2^{+})$		σ =0.6 mb 3.
2860 7	(1,3)	(1,3)	$\beta_1 = 0.061, \beta_3 = 0.076.$
3117 <i>16</i>	(3,4)	(3,4)	$\beta_3 = 0.102, \beta_4 = 0.109.$ B(E3)=0.6 from $\beta_3.$ $\sigma = 1.7$ mb 3.

Continued on next page (footnotes at end of table)

1 **H**(32 **Mg**, 32 **Mg**' γ) 2009Ta08 (continued)

³²Mg Levels (continued)

E(level) [†]	\mathbf{J}^{π}	L‡	Comments
3490 18	(1,2)	(1,2)	$\beta_1 = 0.087, \beta_2 = 0.097.$ $\sigma = 2.3 \text{ mb } 5.$
3552 16	$(3^{-}, 4^{-})$	#	σ =0.3 mb 1.
4215 17	(3,4)	(3,4)	$\beta_3 = 0.076, \beta_4 = 0.089.$ $\sigma = 1.1 \text{ mb } 3.$
5169 24	(2,3)	(2,3)	$\beta_2 = 0.110, \beta_3 = 0.124.$ B(E3)=0.9 from $\beta_3.$ $\sigma = 2.9$ mb 4.
5203 20	(2,3)	(2,3)	$\beta_2 = 0.109, \beta_3 = 0.122.$ B(E3)=0.9 from $\beta_3.$ $\sigma = 2.7$ mb 4.

[†] From $E\gamma$ data.

¹ From Comparison of angular distribution data for ³²Mg particles with coupled-channel calculations (2009Ta08). [#] Determination of L-value from $\sigma(\theta)$ is ambiguous due to lack of statistics (2009Ta08).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
887 7	100	887	2+	0	0^{+}	E_{v} : other: 895 (2002Mo35), 887 (2014Mi09).
1232 11	0.4 2	3552	$(3^{-}, 4^{-})$	2320	4+	
1433 9	12.3 18	2320	4+	887	2^{+}	
1895 <i>13</i>	1.7 4	4215	(3,4)	2320	4+	
1973 [‡]	1.4 4	2860	(1,3)	887	2^{+}	
2230 14	2.7 5	3117	(3,4)	887	2^{+}	
2551 [‡]	1.0 5	2551.1	$(1^{-},2^{+})$	0	0^{+}	
2603 16	3.7 8	3490	(1,2)	887	2^{+}	
2883 16	4.3 6	5203	(2,3)	2320	4^{+}	
^x 3256 43						
4282 23	4.6 7	5169	(2,3)	887	2^{+}	

 $\gamma(^{32}Mg)$

[†] From 2009Ta08. [‡] 2009Ta08 do not quote any uncertainty, at least 15 keV as estimated from other γ -ray uncertainties.

 $x \gamma$ ray not placed in level scheme.

1 H(32 Mg, 32 Mg' γ) 2009Ta08

 $^{32}_{12}Mg_{20}$