³²S(p,n) **1987An13,1992Ta04**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024

1987An13: E=135 MeV proton beam was produced from the Indiana University Cyclotron Facility. Target was a 43.8 mg/cm² self-supporting Li₂S foil. Neutrons were detected with rectangular bars of fast plastic scintillator (FWHM=270 keV). Measured neutron spectra by time-of-flight method at 0° and 6°. Deduced levels, B(GT) from DWBA analysis.

1992Ta04: E=136 MeV proton beam was produced from the Indiana University Cyclotron Facility. Target was a 43.8 mg/cm² self-supporting foil of Li₂S. Neutrons were detected with rectangular bars of fast plastic scintillator (FWHM=320-480 MeV). Measured neutron spectra by time-of-flight method, $\sigma(\theta)$. Deduced stretched 6⁻ states, J, π from DWIA analysis of $\sigma(\theta)$ distributions.

³²Cl Levels

Many states are interpreted by 1987An13 as 1⁺ states from forward peaking of cross sections characteristic of L=0 transitions. Cross sections listed in comments are at 0.2° and are interpreted as Gamow-Teller transitions (1987An13).

E(level) [†]	$J^{\pi \ddagger}$	B(GT)	Comments
0		0.014	$d\sigma/d\Omega$ =0.07 mb/sr 4.
1150 <i>30</i>		0.344	$d\sigma/d\Omega=1.64$ mb/sr 2.
2790 <i>50</i>		0.071	$d\sigma/d\Omega=0.34$ mb/sr 1.
$373\times10^{1}\ 10$		0.025	$d\sigma/d\Omega$ =0.12 mb/sr 3.
3.8×10^{3} #	$(6^{-})^{\#}$		
4060 <i>30</i>		1.005	$d\sigma/d\Omega=4.78$ mb/sr 3.
4580 <i>30</i>		0.310	$d\sigma/d\Omega$ =1.47 mb/sr 2.
4.7×10^{3} #	$(6^{-})^{\#}$		
5410 <i>50</i>		0.087	$d\sigma/d\Omega$ =0.41 mb/sr <i>I</i> .
5.6×10^{3}	$(6^{-})^{\#}$		
606×10 ¹ 10		0.033	$d\sigma/d\Omega$ =0.16 mb/sr <i>I</i> .
$629 \times 10^{1} 10$		0.021	$d\sigma/d\Omega$ =0.10 mb/sr 3.
6.3×10^{3} #	$(6^-)^{\#}$		
$665 \times 10^1 \ 10$		0.068	$d\sigma/d\Omega$ =0.32 mb/sr 11.
6.8×10^{3} #	$(6^{-})^{\#}$		
$736 \times 10^{1} 10$		0.058	$d\sigma/d\Omega$ =0.28 mb/sr 9.
7.4×10^{3} #	$(6^-)^{\#}$		
$772 \times 10^1 \ 10$		0.055	$d\sigma/d\Omega$ =0.26 mb/sr 9.
$830 \times 10^{1} 10$		0.030	$d\sigma/d\Omega$ =0.14 mb/sr 4.
8.4×10^{3}	$(6^{-})^{\#}$		
860×10 ¹ 10		0.032	$d\sigma/d\Omega$ =0.15 mb/sr 5.
9.2×10^{3}	$(6^{-})^{\#}$		
9.8×10^{3} #	$(6^{-})^{\#}$		
1000×10 ¹ 10	(0)	0.032	$d\sigma/d\Omega$ =0.15 mb/sr 5.
1030×10 ¹ 10		0.027	$d\sigma/d\Omega = 0.13$ mb/sr 4.
1030/10 10		0.027	40 /482-0.15 III0/SI 1.

 $^{^\}dagger$ From 1987An13, unless otherwise stated. Uncertainties estimated in the evaluation of 1990En08.

[‡] Levels in 1987An13 are mostly interpreted as 1⁺ states from $\sigma(\theta)$.

[#] From DWIA analysis of $\sigma(\theta)$ distributions (1992Ta04).

[@] From DWBA analysis of $\sigma(\theta)$ (1987An13).