32 Mg β^- decay (80.4 ms) 2004Gr08,1984Gu19

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024

Parent: ³²Mg: E=0; $J^{\pi}=0^+$; $T_{1/2}=80.4$ ms 4; $Q(\beta^-)=10270$ 8; $\%\beta^-$ decay=100

³²Mg-T_{1/2}: From Adopted Levels of ³²Mg. Adopted value is taken from 2017Ha23 in this study. Other values from this study: 86 ms 5 (2004Gr08), 120 ms 20 (1984La03), 85 ms 13 (1995ReZZ), 1999YoZW.

³²Mg-%β⁻ decay: %β⁻n=5.5 5 (2004Gr08) is adopted in Adopted Levels of ³²Mg. Others: %β⁻n=4.3 21 (1995ReZZ,2008ReZZ), 2.4 5 (1984La03), 6 4 (1999YoZW,preliminary).

2004Gr08: source of ³²Mg was produced by fragmentation of 50 MeV/nucleon ³⁶S beam on a Be target, selected by the LISE3 spectrometer at GANIL. γ rays were detected with two Ge detector and a LEPS detector; delayed neutrons were detected with the TONNERRE array consisting of 19 plastic scintillators. Measured E γ , I γ , $\gamma\gamma$ -coin, γ (t), delayed neutrons. Deduced levels, J, π , delayed-neutron emission probabilities, β -decay branching ratios.

1984La03, 1984Gu19: ³²Mg source was produced by fragmentation of a 30 g/cm² iridium target by 10 GeV protons from the CERN synchrotron, separated by a mass spectrometer, and transported into a thin stainless steel tube. γ rays were detected with Ge(Li) detectors and delayed-neutrons were detected with a ³He proportional counter. Measured E γ , I γ , delayed neutrons. Deduced levels, parent T_{1/2}, delayed-neutron and γ -ray emission probabilities.

Others:

2017Ha23: E=69.2 MeV/nucleon ⁴⁰Ar beam was produced from the Heavy Ion Research Facility in Lanzhou (HIRFL). Target was 182.6 mg/cm² thick ⁹Be. Fragments were identified based on energy loss, time-of-flight, and magnetic rigidity on an event-by-event basis, and implanted into a 1500– μ m-thick double-sided Si strip detector (DSSD) between two plastic scintillators. Measured implant- β (t). Deduced parent T_{1/2}. Comparisons with available data.

1999YoZW: ³²Mg from ⁹Be,¹⁸¹Ta(⁴⁸Ca,X) E=70 MeV/nucleon, measured half-life and delayed neutron probability.

1993K102: source of ³²Mg from U(p,X) at 600 MeV. Measured E γ , $\gamma\gamma$ -coin. Three γ rays of 735.5, 2466.9 and 2765.3 keV with coincidence relationship between 735 γ and 2467 γ established.

1979De02: two observed γ rays of 731 2 (I γ =36 15) and 2750 5 (I γ =100) possibly were from decay of 32 Mg.

From RADLIST code, deduced energy balance=9330 keV *100* as compared to 9705 keV 52 from Q-value=10270 8 and branching of 94.5% for population of levels in ³²Al by β^- decay.

This decay scheme is considered incomplete due to a large gap between the highest observed level at E=3202 and the Q-value=10270 8 (2021Wa16). S(n)=4220 8 and S(2n)=11378 7 (2021Wa16) for ³²Al.

³²Al Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0	1+	32.3 ms 4	
735.1 7	(2^{+})		
956.7 9	(4^{+})	186.9 ns 7	
1178.6 <i>11</i>	(4 ⁻)		
1743.5? 8			
2765.3 7	1^{+}		
3202.2 8	1^{+}		
4220+x			E(level): x<6050 11 from $Q(\beta^{-})({}^{32}Mg)$ -S(n)(${}^{32}Al$), where $Q(\beta^{-})$ =10270 8 and S(n)=4220 8 from 2021Wa16. This represents a range of unobserved levels that subsequently decay to ${}^{31}Al$ via one-neutron emission.

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV where not given.

[‡] From Adopted Levels.

 $^{^{32}}$ Mg-Q(β^{-}): From 2021Wa16.

32 Mg β^- decay (80.4 ms) 2004Gr08,1984Gu19 (continued)

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
$\begin{array}{c} (3.1 \times 10^{3 \#} 3I) \\ (7068 \ 8) \\ (7505 \ 8) \\ (10270 \ 8) \end{array}$	4220+x 3202.2 2765.3 0	5.5 5 10.7 10 24.6 8 ≈55	4.4 4.1 ≈4.4	I β^- : from adopted $\%\beta^-n=5.5~5$ for the decay of 32 Mg g.s. av E β =3237 46 av E β =3453 46 av E β =4818 46 I β^- : estimated by 2004Gr08 assuming <5% for feedings to other excited levels, 35.3% for feedings to 2765 and 3202 levels, and measured $\%\beta^-n=5.5$.

[†] From 2004Gr08 based on γ intensity balance, unless otherwise noted.

[‡] Absolute intensity per 100 decays.

[#] Estimated for a range of levels.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
222 [@]	2.1 [@] 2	956.7	(4^{+})	735.1	(2^{+})
222 [@]	2.1 [@] 2	1178.6	(4 ⁻)	956.7	(4^{+})
565	0.6 1	1743.5?		1178.6	(4 ⁻)
735.5 [‡] 12	9.0 2	735.1	(2+)	0	1^{+}
797	0.0.1	1742 59		0567	(4+)
/8/	0.9 1	1/43.5?		956./	(4')
1743 [°]	≤2.8	1743.5?		0	1+
2030	1.4 <i>3</i>	2765.3	1+	735.1	(2^{+})
2466.9 [‡] 12	7.2 7	3202.2	1^{+}	735.1	(2+)
2765.3 [‡] 9	23.2 5	2765.3	1+	0	1^{+}
				_	
3202	3.5 4	3202.2	1+	0	1^{+}

[†] From 2004Gr08, unless oth	erwise noted.	
--	---------------	--

[‡] From 1984Gu19.

[#] Absolute intensity per 100 decays.

[@] Multiply placed with undivided intensity.

[&] Placement of transition in the level scheme is uncertain.

/ 11/	$\gamma(^{32}\text{Al})$
-------	--------------------------

 E_{γ} : others: 731 2 (1979De02), 735 (2004Gr08). I_{γ} : other: 10.6 24 (1984Gu19). Relative intensity=42 9 (1984Gu19), 36 15 (1979De02).

I_{γ}: also contributed by double escape of 2765 γ .

 E_{γ} : other: 2466 (2004Gr08). I_γ: other: 4 2 (1984Gu19), (2467γ)(735γ) coin seen by 1993Kl02. Relative intensity=16 8 (1984Gu19).

Comments

 E_{γ} : others: 2750 *5* (1979De02), 2765 (2004Gr08). I_y: other: 25 *1* (1984Gu19). Relative intensity=100 (1984Gu19, 1979De02).

32 Mg β^- decay (80.4 ms) 2004Gr08,1984Gu19

 $^{32}_{13}\text{Al}_{19}$