³³Mg β⁻n decay (90.5 ms) 2006AnZW,1984La03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 201,1 (2025)	31-Oct-2024

Parent: ³³Mg: E=0; $J^{\pi}=3/2^-$; $T_{1/2}=90.5$ ms 16; $Q(\beta^-n)=7991$ 8; $\%\beta^-n$ decay=15 2

 33 Mg-J^{π},T_{1/2}: From Adopted Levels of 33 Mg in ENSDF database (2011 update).

³³Mg-% β^- n decay: Weighted average of 14 2 (2006AnZW), 25 *13* (1995ReZZ,2008ReZZ), and 17 5 (1984La03,1984Gu19). Others: 19 2 estimated from absolute intensities of 8 *l* and 11 2 for 735 γ and 2765 γ to g.s., respectively, in ³²Al from ³³Mg β^- n decay as measured by 2008Tr07; 50 *16* (1999YoZW,preliminary).

2006AnZW: ³³Mg ions were produced by fragmentation of 78 MeV/nucleon ³⁶S beam at GANIL, selected by the LISE3 spectrometer, and focused onto a telescope of a silicon detector and a plastic scintillator. γ rays were detected with two EXOGAM clover modules and a LEPS detector; neutrons were detected with the TONNERRE array of 19 plastic scintillators. Measured E γ , E(n), $\beta\gamma$ -coin, β n-coin. Deduced levels, decay branching ratios.

1984La03 (also 1984Gu19): ³³Mg source was produced by fragmentation of a 30 g/cm² iridium target by 10 GeV protons from the CERN synchrotron, separated by a mass spectrometer, and transported into a thin stainless steel tube. γ rays were detected with Ge(Li) detectors and delayed-neutrons were detected with a ³He proportional counter. Measured E γ , delayed neutrons. Deduced levels, parent T_{1/2}, decay branching ratio.

2019Li41, 2017LiZZ: measured β and γ spectroscopic data for decay chains of ³⁴Mg and ³³Al at CERN-ISOLDE. Preliminary decay scheme is from 2006AnZW.

³²Al Levels

E(level) [†]	J π ‡	T _{1/2} ‡	Comments
0	1+	32.3 ms 4	
734	(2^{+})		
956	(4^{+})	186.9 ns 7	
1179	(4 ⁻)		
2765?	1^{+}		E(level): rounded value from Adopted Levels.

[†] From 2006AnZW, unless otherwise noted.

[‡] From Adopted Levels.

$\gamma(^{32}\text{Al})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
222	956	(4^{+})	$734 (2^+)$
223	1179	(4-)	956 (4+)
734	734	(2^{+})	0 1+
2765	2765?	1^{+}	0 1+

 E_{γ} , I_{γ} : 2017LiZZ report an absolute intensity of 3.3 8 per 100 ³³Mg decays using the adopted $\%\beta^-n=14$ 2 and measured counts of ³³Mg decays and 2765 γ transition. This transition is not seen in other β^-n studies but is seen in ³²Mg β^- decay.

Comments

[†] From level-energy difference.

Delayed Neutrons (³²Al)

E(³² Al)	$I(n)^{\ddagger\ddagger}$	$E(^{33}Al)^{\dagger}$
0	1.9 2	5930
0	3.3 <i>3</i>	5980
734	0.71 4	6820
734	1.32 4	7250

Continued on next page (footnotes at end of table)

 $^{^{33}}$ Mg-Q(β^{-} n): From 2021Wa16.

33 Mg β^- n decay (90.5 ms) 2006AnZW,1984La03 (continued)

Delayed Neutrons (continued)

E(³² Al)	$I(n)^{\ddagger\ddagger}$	$E(^{33}Al)^{\dagger}$	Comments
734	0.90 3	7470	
734	1.96 5	8870	
1179			This decay branch is shown in Figure 2 of 2006AnZW, but no information is given.

[†] From 2006AnZW. Note that the sum of all I(n) intensities is less than %β⁻n=14 2 also reported in 2006AnZW, most likely because %β⁻n is determined from the integration of the whole neutron spectrum.
[‡] Absolute intensity per 100 decays.

$\frac{^{33}\text{Mg}\,\beta^-\text{n decay (90.5 ms)}}{2006\text{AnZW},1984\text{La03}}$

Decay Scheme

I(n) Intensities: I(n) per 100 parent decays

 $^{33}_{13}\text{Al}_{20}$