31 Al β^- decay (644 ms) 1973Go22,1979De02

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022

Parent: ³¹Al: E=0; $J^{\pi}=5/2^{(+)}$; $T_{1/2}=644$ ms 25; $Q(\beta^{-})=7998.3$ 22; $\%\beta^{-}$ decay=100.0

³¹Al-J^{π},T_{1/2}: From Adopted Levels of ³¹Al.

³¹Al-Q(β^{-}): From 2021Wa16.

1973Go22: ³¹Al from ¹⁸O(¹⁸O, α p) and ¹⁵N(¹⁸O,2p γ), E(¹⁸O)=41 MeV, Brookhaven, measured E γ , I γ , $\beta\gamma$ coin, β -spectra, ³¹Al half-life, level half-lives.

1979De02: ³¹Al from the decay of ³¹Mg produced in U(p,X) E(p)=24 GeV, CERN, measured E γ , isotopic half-life, $\beta\gamma$ coin, $\beta\gamma\gamma$ coin. 1980De26 from the same group produced the source using 600 MeV protons, measured E γ , I γ , β -delayed nn(t).

³¹Si Levels

$J^{\pi \ddagger}$	T _{1/2} ‡
3/2+	157.24 min 20
$1/2^{+}$	0.53 ps 12
$5/2^{+}$	0.57 ps 15
$3/2^{+}$	38 fs 17
$5/2^{+}$	14 fs 14
	$ \begin{array}{r} J^{\pi \ddagger} \\ 3/2^+ \\ 1/2^+ \\ 5/2^+ \\ 3/2^+ \\ 5/2^+ \end{array} $

[†] From a least-squares fit to $E\gamma$ values.

[‡] From Adopted Levels.

 $\gamma(^{31}\text{Si})$

I γ normalization: Original intensity values per 100 parent decays in 1979De02 are deduced by the authors from measured γ intensities and the total number of ³¹Al, as follows: 1. determine the number of ³⁰Mg from the ³⁰Al activity; 2. determine the number of ³¹Mg from the number of ³⁰Mg using $\%\beta^-n(^{31}Na)=30\ 8\ (1974Ro31)$ and assuming $\%\beta^-2n(^{31}Na)=0$; 3. determine the number of ³¹Al from the decay of ³¹Mg assuming $\%\beta^-n(^{31}Mg)=0$.

E_{γ}^{\ddagger}	I_{γ} ^{#&}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
621.81 <i>30</i>	5.3 18	2316.70	3/2+	1694.83	5/2+				Additional information 3. I_{γ} : original % I_{γ} =3.0 10 (1979De02).
752.23 30	12.3 35	752.20	1/2+	0.0	3/2+				Iγ(relative)=9.9 7 (1973Go22). Additional information 1. L: original %Iv=7 2
1564.49 30	10.9 <i>35</i>	2316.70	3/2+	752.20	1/2+				(1979De02). $I\gamma$ (relative)=18.5 8 (1973Go22). Additional information 4. L: original %Iy=6.2 20
1694.73 <i>30</i>	19 5	1694.83	5/2+	0.0	3/2+	M1+E2	+4.4 10	0.0001785 29	(1979De02). Iy(relative)=17.3 <i>16</i> (1973Go22). α =0.0001785 <i>29</i> ; α (K)=9.35×10 ⁻⁶ <i>14</i> ; α (L)=6.68×10 ⁻⁷ <i>10</i> ; α (M)=4.40×10 ⁻⁸ 6
									α (L)=6.68×10 ⁻⁷ 10; α (M)=4.40×10 ⁻⁸ 6 α (IPF)=0.0001684 27

31 Al β^- decay (644 ms) 1973Go22,1979De02 (continued)

$\gamma(^{31}\text{Si})$ (continued)

E_{γ}^{\ddagger}	Ι _γ #&	$E_i(level)$	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments
2316.64 40	30 9	2316.70	3/2+	0.0 3/2	M1+E2	+0.41 22	0.000395 14	Additional information 2. I_{γ} : original % I_{γ} =10.5 30 (1979De02). I_{γ} (relative)=58.9 16 (1973Go22). α =0.000395 14; α (K)=4.94×10 ⁻⁶ 9; α (L)=3.53×10 ⁻⁷ 7; α (M)=2.32×10 ⁻⁸ 4
2787.6 ^a 8	1.5 8	2787.7?	5/2+	0.0 3/2	M1+E2	+0.20 5	0.000582 8	$\begin{array}{l} \alpha(\mathrm{IPF}) = 0.000390 \ 14 \\ \mathrm{Additional} \\ \mathrm{information} \ 5. \\ \mathrm{I}_{\gamma}: \ \mathrm{original} \ \% \mathrm{I}_{\gamma} = 17 \ 5 \ (1979\mathrm{De02}). \\ \mathrm{I}_{\gamma}(\mathrm{relative}) = 72.8 \ 18 \ (1973\mathrm{Go22}). \\ \alpha = 0.000582 \ 8; \ \alpha(\mathrm{K}) = 3.68 \times 10^{-6} \ 5; \end{array}$
								$\alpha(L)=2.63\times10^{-7} 4;$ $\alpha(M)=1.733\times10^{-8} 24$ $\alpha(IPF)=0.000578 8$ E _{\gamma} : 1973Go22 state it is unclear if the γ from this level which they detected is unambiguously from the decay of ³¹ Al, 1979De02 do not
								report this state being populated. I_{γ} : from I(2786.6 γ)/I(2316.6 γ)=3.6 15/72.8 18 in 1973Go22 and I(2316.6 γ)=30 9 (1979De02).

[†] Additional information 6.

[‡] From 1973Go22. It is unclear if 1979De02 actually measured the energies of the γ -rays they report, there is a confusing footnote (in their table 7) saying the energies come from 1973Go22 but they report slightly different values from those in 1973Go22.

[#] From 1979De02, unless otherwise noted. Original values are deduced by the authors based on $\%\beta^-n(^{31}Na)=30\ 8\ (1974Ro31)$, assuming $\%\beta^-2n(^{31}Na)=0$ and $\%\beta^-n(^{31}Mg)=0$, and the quoted values and uncertainties are obtained (by the evaluators) by scaling original values using the adopted $\%\beta^-n=39\ 5$, $\%\beta^-2n=0.7\ 1$ for ³¹Na and adopted $\%\beta^-n=6.2\ 19$ for ³¹Mg. Values reported by 1973Go22 given under comments are relative intensities normalized to I(621.8 γ)+I(1564.5 γ)+I(2316.6 γ)=100, and are used to deduce branching ratios in Adopted Gammas because of their higher precisions than values of absolute intensities in 1979De02.

[@] From Adopted Gammas.

& Absolute intensity per 100 decays.

^{*a*} Placement of transition in the level scheme is uncertain.

³¹Al β^- decay (644 ms) 1973Go22,1979De02

 $^{31}_{14}{\rm Si}_{17}$