			Hist	ory		
	Туре	Autho	or	Citation	Lite	erature Cutoff Date
	Full Evaluation	Jun Chen and E	Balraj Singh	NDS 184,29 (2022)		24-Jun-2022
$Q(\beta^{-})=1491.51 4;$ $Q(\alpha)=-10787.36 0;$ S(2n)=17196.59 4; Mass measurement Other measurement $2012Zh06: {}^{9}Be({}^{40});$ $dependence ont 2015Mo17: {}^{9}Be({}^{40};2010Wa20: {}^{208}Pb(Theoretical calcular(www.nndc.bn)$	S(n)=6587.39 4; $S(p)=62021Wa16$). Value is S(2p)=26914.6 3 (202) ts: 2016Be19, 1997Ro2 ts: $Ar,X) E=57 MeV/nucle Par,X) E=95 MeV/nucle 3^{36}S,X) E=215 MeV, months tions: 40 primary reference 1.gov/nsr/) are listed underS(p)=269782000000000000000000000000000000000000$	 14373.9 <i>19</i>; Q(α) rounded by evalue 1Wa16). 6. on, measured fragon, measured more assured fragment ences for structure ler 'document recommender for the structure 	=-10787.4 <i>I</i> nators. gment yield, r omentum distr spectrum incl e and one for cords'.	2021Wa16 nomentum distributio ributions of fragments uding ³¹ Si using PRI decay characteristics	ns at H s at RII SMA-C retriev	IIRFL facility; deduced target KEN. CLARA apparatus. ed from the NSR database
Additional information	ation 1.					
Identificat: ³¹ Si 0,3/2 ⁺ 752,1/2 ⁺ 1695,5/2 ⁺ 2317,3/2 ⁺ 3133,7/2 ⁺ ΔE(1)=E(³¹ P) ΔE(2)=F(³¹ S)	ion of T=3/2 isospi $^{31}P \Delta E(1)$ $^{6380,3/2^+}$ $^{7141,1/2^+} +9$ $^{8106,(5/2)^+} +3:$ $^{8738,3/2^+} +4:$ $^{9413,(7/2^-)} -10$ $^{-E}(^{31}Si)-6380$ $^{-E}(^{31}P)-6281$	n (quadruplet) ³¹ S 6281,3/2 6975,1/2 00) states ir ΔE(2) + + -58	A=31 nuclei		
			³¹ Si L	evels		
		CI	USS Reference	(AREF) Flags		
E4 11 [†] 17 [#]	A ${}^{31}\text{Al}\beta^{-}$ de B ${}^{32}\text{Al}\beta^{-}$ n d C ${}^{18}\text{O}({}^{18}\text{O},\alpha)$ D ${}^{28}\text{Si}({}^{18}\text{O},{}^{12}\text{Si})$	cay (644 ms) ecay (32.1 ms):? ηγ) Ο)	$\begin{array}{l} E & {}^{29}\text{Si}(\\ F & {}^{30}\text{Si}(\\ G & {}^{30}\text{Si}(\\ H & {}^{30}\text{Si}(\\ \end{array}$	(t,p) n,γ) E=thermal n,γ), (n,n) :resonances d,p), $(pol d,p)$	I J K L	${}^{30}\text{Si}(d,p\gamma)$ ${}^{30}\text{Si}(t,d),(\text{pol }t,d)$ ${}^{31}P(\mu^{-},\nu)$ ${}^{31}P(n,p)$
$\frac{E(\text{level})}{0.0} = \frac{J^{\pi n}}{2/2^+}$	$T_{1/2}^+$	XREF	7 0=-100	(Comme	ents
0.0 <i>3/2</i> ⁻	157.24 mm 20 Å	J	π : L(pol d,p)= powers. $\Gamma_{1/2}$ from weig (1993Mc05) min to 0.50 min 6 (1968 Anz 174, 57 157.3 min 5 Tid 63, 207 al., Compt H reduced χ^2 = Adopted neutr	EL(pol t,d)=2 from 0 ghted average of 157. 1, 157.47 min 50 (198 min by evaluators to Re04), 157.2 min 6 (55 (1965)), 158.4 min (1952De35), 157.1 r (1951)), 155.5 min <i>I</i> Rend 207, 423 (1938) =0.92. Other: 2150-18 on stripping spectroso	⁺ and I 16 min 9Ab05 consid Osterr. <i>12</i> (19 nin 7 (0 (1950), and 30 min copic fa	1/2 transfer from analyzing 20 (2017Da28), 163.0 min 58, uncertainty increased from 0.012 er systematic uncertainties), 157.2 Akad. Wiss., MathNaturw. Kl., 058Gu09), 159 min 1 (1952Mo12) Wennerblom et al., Svensk Kem DLu01), 157.3 min 13 (Cichocki e 170 min 10 (1937Ne02), with (1934Fe01). actor=0.75 9 (1977En02).
752.23 3 1/2+	0.53 ps 12 A	CDEF HIJKL J	π : L(d,p)=L(t	$(,d)=0 \text{ from } 0^+.$		

Continued on next page (footnotes at end of table)

³¹Si Levels (continued)

E(level) [†]	J ^{π#}	T _{1/2} ‡	XREF	Comments
				Adopted neutron stripping spectroscopic factor S=0.46 21 (1977En02).
1694.91 <i>4</i>	5/2+	0.57 ps 15	A CDEF HIJK	J ^{π} : L(d,p)=2 from 0 ⁺ and L+1/2 transfer from analyzing power; spin=5/2 from $\gamma\gamma(\theta)$ in (d,p γ).
				Adopted neutron stripping spectroscopic factor S=0.04 2 (1977En02).
2316.86 9	3/2+	38 fs 17	A C EF HIJKL	J^{π} : L(d,p)=2 from 0 ⁺ and L-1/2 transfer from analyzing power; spin=3/2 from $\gamma\gamma(\theta)$ in (d,p γ).
2799.00 6	5/2+	14 f- 14		Adopted neutron stripping spectroscopic factor S=0.06 2 (1977En02).
2788.09 0	5/2*	14 18 14	A C EF HIJ	J ^{π} : L(d,p)=L(pol t,d)=2 from 0 ⁺ and L+1/2 from analyzing power in (pol t d)
3133.11 23	7/2-	0.37 ps 8	CDE HIJK	J^{π} : L(pol d,p)=3 and L+1/2 transfer from analyzing power; J=7/2 also from $\gamma\gamma(\theta)$ in (d,p γ).
				Adopted neutron stripping spectroscopic factor S=0.71 13 (1977En02).
3532.92 3	3/2-	<10 fs	CDEF HIJK	J^{π} : L(pol d,p)=L(pol t,d)=1 from 0 ⁺ and L+1/2 transfer from analyzing powers.
				Adopted neutron stripping spectroscopic factor S=0.52 9 (1977En02).
3873.6 7	$(7/2^+)$		CEH	J^{π} : L(d,p)=(4) from 0 ⁺ ; 3874.2 γ to 3/2 ⁺ .
4261.0 15	3/2 ,5/2			$J^{*}: L(d,p)=2 \text{ from } 0^{+}.$
4382.38 3	5/2		C EF HI K	Adopted neutron stripping spectroscopic factor S=0.15 4 (1977En02).
4690.5 16			ЕН	E(level): from (d,p). Other: 4688 10 from (t,p).
4719.1 3	1/2+		СЕНК	E(level): from (d,p). Other: 4716.5 20 from E_{γ} . $I^{\pi}: L(d,p)=0$ from 0^{+}
4943.5 17			СЕН	XREF: E(4940)H(4931). I^{π} : 2155y and 3249y to 5/2 ⁺ : 7/2
4967 5 9			СЕН	$3 \cdot 2133$ and 3243 to $3/2$, $7/2$.
4997.1 10			C H L	XREF: H(4992)L(5000).
5281.37 4	$(1/2)^{-}$		CEFH K	J^{π} : L(d,p)=1 from 0 ⁺ and 1/2 ⁻ from shell-model calculations.
5311.1 15			СЕН	
5442.9 13	5/2-,7/2-		Ce H	XREF: $e(5439)$. J ^{π} : L(d,p)=3 from 0 ⁺ .
5451 <i>3</i>			Се	XREF: e(5439).
5594 10			Е	E(level): from (t,p).
5600.2 20			СеН	XREF: e(5605)H(5604).
5610.9 14			Сe	XREF: e(5605).
5656.2 20			СЕН	XREF: E(5655)H(5647).
56/6.9 15			CEH	XREF: E(56/5)H(56/8).
5730 10			E C	
5818 10	$(1/2^+)$		с н	E(level): weighted average of 5816 10 from (t p) and 5819 10
5010 10	(1/2)		2 11	from (d,p). $J^{\pi}: L(d,p)=(0)$ from 0 ⁺ .
5836 <i>3</i>			С	
5856 <i>3</i>			Сe	XREF: e(5868).
5873.15 7	1/2-,3/2-		eF H	XREF: e(5868).
	· · · · · ·			J^{π} : L(d,p)=1 from 0 ⁺ .
5957.92 18	$(1/2^{-}, 3/2, 5/2^{+})$		EF H	J^{n} : L(d,p)=(1,2) from 0 ⁺ .
5984.2 19	$(3/2^+, 5/2^+)$		CEH	$J^{A}: L(d,p)=(2) \text{ from } U^{T}.$
00/1.9 10	5/2, 5/2		E H	L(1eve1): from (d,p). Other: 6008 10 from (t,p). J^{π} : L(d,p)=2 from 0 ⁺ .

Continued on next page (footnotes at end of table)

³¹Si Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}$ ‡	XREF	Comments
6106 <i>1</i>	5/2-,7/2-		ЕН	E(level): from (d,p). Other: 6107 10 from (t,p).
6250.3 20	3/2+,5/2+		СЕН	J^{π} : L(d,p)=3 from 0 ⁺ . XREF: E(6248)H(6241).
(005 10				J^{π} : L(d,p)=2 from 0 ⁺ .
6285 <i>10</i> 6350 <i>4</i>			н F H	F(level): weighted average of 6340 10 from (t n) and 6351 4
0550 4			L 11	from (d,p).
6418.3 20	(5/2 ⁻ ,7/2 ⁻)		С Н	XREF: $H(6415)$. J ^{π} : L(d,p)=(3) from 0 ⁺ .
6450 10			Е	
6461.4 10	$(3/2^+, 5/2^+)$		e H	XREF: e(6468).
				E(level): from (d,p). I^{π} : I (d,p)=(2) from 0 ⁺
6473 4			Ce	J : L(u,p) = (2) from 0 : XRFF: $e(6468)$
6490.9 13			Н	McLi . c(0100).
6584.3 21	5/2-,7/2-		СЕН	XREF: E(6576).
				E(level): other: 6584.0 10 from (d,p).
				J^{π} : L(d,p)=3 from 0 ⁺ .
(6587.40 3)	1/2+		F	J^{π} : s-wave neutron capture in 0 ⁺ g.s. of ³⁰ Si.
6592.22 3	$1/2^{-2}$	1.90 eV 7	G	
6602.06 6			GH	E(level): weighted average of 6602.06 4 from (n,γ) and 6600.6 <i>10</i> from (d,p).
6636.1 <i>16</i>			Н	E(level): weighted average of 6650 <i>10</i> from (t,p) and 6636.1 <i>16</i> from (d,p).
6648.8			G	
6661.7 <i>14</i>			Ceh	XREF: e(6650)h(6661).
6765.1 8	$1/2^+$	11.00 keV 30	G	J^{n} : L=0 and R-matrix fit in neutron resonances.
6771.8 4	[3/2](+)		GH	E(level): from (n,γ) :resonances. Other: 6771 2 from (d,p) . J ^{π} : L=(2) and R-matrix fit in neutron resonances.
6792.9 12	2/2+ 5/2+		СН	E(level): other: $6790.9 \ 12 \ \text{from (d,p)}$.
6815.0 4	3/2',5/2'		E GH	E(level): weighted average of 6814.1 5 from (d,p) and 6815.1 2
				from (n, γ) :resonances. Other: $\delta 810 \ 10 \ \text{from} (t, p)$.
6876 8 14			еH	J : $L(u,p)=2$ from 0 , also $L=2$ in (u,γ) . resonances. XRFF: $e(6874)$
0070.017			C II	E(level): from (d,p).
6880.6.3	$3/2^{-0}$	0.260 keV 20	e G	XREF: e(6874).
	-1-			E(level): from (n,γ) :resonances.
6887 <i>3</i>			C	
6915.5 6	$3/2^+, 5/2^+$		Н	J^{π} : L(d,p)=2 from 0 ⁺ .
6954.2 11	3/2',5/2'		Н	J^{n} : L(d,p)=2 from 0 ⁺ .
6987.4 4	1/2- @	1.31 keV 25	G	
7012.2 11	(1/2,3/2)		н	J^{n} : L(d,p)=(1) from 0 ⁺ .
7034.0 18			C	
7164 10	$(3/2^+, 5/2^+)$		Сн	J^{π} : L(d,p)=(2) from 0 ⁺
7207 2	(3/2 ,3/2)		H	5 · D (a , p) (2) nom 6 ·
7212.2 6	$3/2^+.5/2^+$		G	
7225.7 16	- / = ,-/ =		c	
7269.7 7	[3/2+,5/2+]@		GH	E(level): weighted average of 7269.9 7 from (n,γ) and 7268.5 <i>19</i> from (d,p) .
7309.1 7	3/2-@		GH	E(level): from (α, γ):resonances. Other: 7310.6 14 from (d,p).
				solution: $(3/2, 3/2)$ from $L(u,p)=(2)$ is inconsistent if the same levels are populated.

Continued on next page (footnotes at end of table)

³¹Si Levels (continued)

E(level) [†]	J ^{##}	$T_{1/2}^{\ddagger}$	Х	REF	Comments
7359.1 7	$[1/2^{-}]^{@}$	0.86 keV 13		G	
7369.3 8	$[1/2^{-}]^{@}$	0.52 keV 10		GH	XREF: H(7365).
7372.6 8	$[1/2^{-}]^{@}$	0.60 keV 12		G	
7405.2 8	3/2-@	20.8 keV 8		GH	XREF: H(7401).
7409.1 17	0			Н	
7438.3 4	3/2+,5/2+@			GH	E(level): from (d,p). Other: 7438.5 8 from (n,γ) . J ^{π} : L(n)=2 from (n,γ) :resonances; L(d,p)=2 or 3 reported in different (d,p) measurements. It is assumed that the same level is populated in (d,p) and (n,γ) :resonances.
7484 <i>3</i>	e		С	Н	XREF: H(7483).
7536.0 10	$1/2^{-a}$	6.0 keV 10	-	G	
7544 3	(3/2 + 5/2 - 7/2 -)		С	ш	$I\pi$: I (d p)-(2 3) from 0 ⁺
7582 3	(3/2, 3/2, 7/2)		С	п	J : L(u,p) - (2,3) from 0.
7642 10	$(3/2^+, 5/2, 7/2^-)$			Н	J^{π} : L(d,p)=(2,3) from 0 ⁺ .
7718 10				Н	
7732.1 16	1/2+	7.50 keV 50		G	J^{n} : L=0 and R-matrix fit in neutron resonances.
7766.3 12	3/2+,5/2+@	5.00 keV 50		GH	E(level): weighted average of 7766.7 <i>12</i> from (n,γ) :resonances and 7765 2 from (d,p) .
7822.1 12	1/2-@	7.9 keV 13		GH	E(level): from (n,γ) :resonances. Other: 7823 10 from (d,p) .
7848.5 13	$[3/2^+, 5/2^+]^{@}$	4.2 keV 10		G	
7856.7 13	[3/2 ⁻] [@]	5.0 keV 16		G	
7883.1 <i>13</i>	1/2-@	9.0 keV 30		G	
7900.6 13	3/2-@	34.4 keV 34		G	
7904.6 8	5/2-,7/2-			Н	J^{n} : L(d,p)=3 from 0 ⁺ .
7927.3 13	1/2 ⁻	5.8 keV 20		G	
7944.2 14	$[3/2^+, 5/2^+]^{\textcircled{0}}$			G	
7954.9 14	$[3/2^{-}]^{\odot}$	5.40 keV 12		G	I_{a} , I (d p)-2 from 0 ⁺
8016.6.16	5/2, $7/25/2^{-} 7/2^{-}$			н	J^{π} : L(d,p)=3 from 0 ⁺
8034.9 12	5/2-,7/2-			Н	
8071 3	5/2-,7/2-			Н	J^{π} : L(d,p)=3 from 0 ⁺ .
8115.9 13	$5/2^{-},7/2^{-}$			H	J^{π} : L(d,p)=3 from 0 ⁺ .
8140 14	5/2 ,1/2 5/2 ⁻ 7/2 ⁻			н	$J^{*}: L(d,p)=3$ from 0 ⁺ . $I^{\pi}: L(d,p)=3$ from 0 ⁺
8220 14	5/2 ,//2			н	
8240 14	$(5/2^-, 7/2^-)$			Н	J^{π} : L(d,p)=(3) from 0 ⁺ .
8359 3	5/2-,7/2-		C	h	J^{π} : L(d,p)=3 from 0 ⁺ .
8570 <i>14</i>	3/2+ 5/2+		C	н	$I^{\pi} \cdot I(d \mathbf{p}) = 2$ from 0^+
8605 3	$3/2^+, 5/2^+$			н	J^{π} : L(d,p)=2 from 0 ⁺ .
8648 <i>3</i>				Н	
8710 14	$(5/2^{-},7/2^{-})$			H	$J'': L(d,p)=(3) \text{ from } 0^+.$
8/80/14 8830/14	$(3/2^+, 3/2^+)$ $(1/2^-, 3/2^-)$			н Н	J : L(u,p)=(2) from 0 ⁺ . $I^{\pi}: L(d p)=(1)$ from 0 ⁺
8850 14	(1/2 ,5/2)			H	$v \cdot E(x,p) = (1)$ from $v \cdot .$
8926 <i>3</i>	$(1/2^-, 3/2^-)$		С	Н	XREF: H(8920).
20(7.7	(1/0= 2/0=)				J^{r_i} : L(d,p)=(1) from 0 ⁺ .
89677 9217 <i>3</i>	(1/2, 3/2) $(3/2^+, 5/2^+)$		С	н Н	$J^{"}: L(a,p)=(1) \text{ from } 0^{"}.$ XREF: H(9230).
					$J^{*}: L(d,p)=(2) \text{ from } 0^{+}.$

³¹Si Levels (continued)

E(level) [†]	XREF
9324 3	С
9380 14	Н

[†] From a least-squares fit to γ -ray energies for levels connected with γ transitions assuming $\Delta E \gamma = 0.5$ keV where not given, and ¹ For low-lying excited states, values are from DSAM in $(d,p\gamma)$; for resonances, Γ data are from ${}^{30}Si(n,\gamma),(n,n)$:resonances. [#] In particle-transfer reactions, target $J^{\pi}=0^+$ for (d,p) and (t,d) reactions and $1/2^+$ for (t,p) reaction.

[@] Adopted from the evaluation of neutron resonances (2018MuZY), with the assignments based on R-matrix analysis except for those in square brackets which are assumed assignments in 2018MuZY based on theoretical predictions.

	Adopted Levels, Gammas (continued)													
	$\underline{\gamma(^{31}\text{Si})}$													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&}	α^{\dagger}	Comments					
752.23	1/2+	752.22 3	100	0.0	3/2+	[M1]			B(M1)(W.u.)=0.098 +28-18 E _{γ} : others: 752.23 30 from ³¹ Al β^- decay and 752.2 2 from					
1694.91	5/2+	942.8 4	1.10 25	752.23	1/2+	[E2]			$({}^{18}$ O,αnγ). B(E2)(W.u.)=2.5 +11-7 E _γ : weighted average of 942.6 4 from (18 O,αnγ) and 943.2 7					
									from (n,γ) E=thermal. I_{γ} : weighted average of 1.2 4 from (¹⁸ O, $\alpha n\gamma$), 1.01 25 from (n,γ) E=thermal, and 4.2 21 from $(d,p\gamma)$.					
		1694.87 5	100.0 21	0.0	3/2+	M1+E2	+4.4 10	0.0001785 29	B(M1)(W.u.)=0.00039 +32-14; B(E2)(W.u.)=11.5 +40-2 $\alpha(K)=9.35\times10^{-6}$ 14; $\alpha(L)=6.67\times10^{-7}$ 10; $\alpha(M)=4.40\times10^{-8}$ 6 $\alpha(IPF)=0.0001685$ 27					
									E _γ : others: 1694.73 30 from ³¹ Al β^- decay and 1695.0 3 from (¹⁸ O, αnγ). L _γ : from (d.pγ). Other: 100.5 from (n.γ) E=thermal.					
2316.86	3/2+	622.07 20	13.9 10	1694.91	5/2+	[M1]			Mult., δ : D+Q from $\gamma\gamma(\theta)$ in (d,p γ); E1+M2 ruled out by RUL. B(M1)(W.u.)=0.24 +17-8					
									$^{(18)}_{\gamma}$. Weighted average of 621.81 50 from $^{(18)}_{\gamma}$ decay and 622.19 20 from (n,γ) E=thermal. Other: 621.5 15 from $(^{18}_{0},\alpha n\gamma)$.					
									I _γ : weighted average of 13.6 <i>10</i> (1973Go22) from ³¹ Al β^- decay and 18 4 from (n,γ) E=thermal. Others: 17 <i>11</i> from (¹⁸ O,αnγ) and 14 8 from (d,pγ).					
		1564.39 <i>30</i>	23.8 22	752.23	1/2+	[E2]		0.0001260 18	B(E2)(W.u.)=47 +34-15 α (K)=1.103×10 ⁻⁵ 15; α (L)=7.88×10 ⁻⁷ 11; α (M)=5.19×10 ⁻⁸ 7 α (IPE)=0.0001141 16					
									E_{γ} : weighted average of 1564.49 30 from ³¹ Al β^- decay and 1564.2 4 from (n,γ) E=thermal. Other: 1564.6 20 from $(^{18}O,\alpha n\gamma)$.					
									I_{γ} : from 19/3G022 in SAI β decay (644 ms). Others: 22 11 from ($^{18}O,\alpha n\gamma$), 22 6 from (n,γ) E=thermal, and 25 8 from ($d,p\gamma$).					
		2316.78 14	100.0 25	0.0	3/2+	M1+E2	+0.41 22	0.000395 14	B(M1)(W.u.)=0.029 +21-10; B(E2)(W.u.)=4 +6-3 α (K)=4.94×10 ⁻⁶ 9; α (L)=3.53×10 ⁻⁷ 7; α (M)=2.32×10 ⁻⁸ 4 α (IPF)=0.000390 14					
									E_{γ} : weighted average of 2316.64 40 from ³¹ Al β ⁻ decay and 2316.80 14 from (n, γ) E=thermal. Other: 2315.7 20 from (¹⁸ O.αn γ).					
									I _{γ} : from 1973Go22 in ³¹ Al β^- decay. Others: 100 <i>17</i> from (¹⁸ O, α n γ), 100 8 from (n, γ) E=thermal, and 100 8 from					

6

³¹₁₄Si₁₇-6

L

	Adopted Levels, Gammas (continued)													
$\gamma(^{31}\text{Si})$ (continued)														
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	$\delta^{\&}$	α^{\dagger}	Comments					
									B(M1)(W.u.)=0.029 +21-10; B(E2)(W.u.)=4 +6-3 α (K)=4.94×10 ⁻⁶ 9; α (L)=3.53×10 ⁻⁷ 7; α (M)=2.32×10 ⁻⁸ 4 α (IPF)=0.000390 14 E _γ : weighted average of 2316.64 40 from ³¹ Al β ⁻ decay and 2316.80 14 from (n,γ) E=thermal. Other: 2315.7 20 from (¹⁸ O,αnγ). I _γ : from 1973Go22 in ³¹ Al β ⁻ decay. Others: 100 17 from (¹⁸ O,αnγ), 100 8 from (n,γ) E=thermal, and 100 8 from (d,pγ). Mult., δ : D+Q from $\gamma\gamma(\theta)$ in (d,pγ); E1+M2 ruled out by BUI					
2788.09	5/2+	472.7 ^{@a} 1095.2 ^{@a}	<4.2 [@] <4.2 [@]	2316.86 1694.91	3/2 ⁺ 5/2 ⁺				KOL.					
		2037.5 [@]	3.5 12	752.23	1/2+	[E2]		0.000340 5	B(E2)(W.u.)>2 α (K)=6.66×10 ⁻⁶ 9; α (L)=4.76×10 ⁻⁷ 7; α (M)=3.13×10 ⁻⁸ 4 α (IPF)=0.000333 5 E _y : other: 2037.7 30 from (¹⁸ O, α ny). I _y : weighted average of 2.9 12 from (¹⁸ O, α ny) and 5.3 21 from (d ru)					
		2787.90 12	100.0 <i>21</i>	0.0	3/2+	M1+E2	+0.20 5	0.000582 8	from (d,pγ). B(M1)(W.u.)=0.06 +8-4; B(E2)(W.u.)=1.5 +19-10 α (K)=3.68×10 ⁻⁶ 5; α (L)=2.63×10 ⁻⁷ 4; α (M)=1.732×10 ⁻⁸ 24 α (IPF)=0.000578 8 E _γ : others: 2787.6 8 from ³¹ Al β ⁻ decay, 2788.3 12 from (¹⁸ O,αηγ), 2790.1 from (d,pγ). I _γ : from (d,pγ). Other: 100 18 from (¹⁸ O,αηγ). Mult.,δ: D+Q from $\gamma\gamma(\theta)$ in (d,pγ); E1+M2 ruled out by RUL.					
3133.11	7/2-	345.3 [#] 5	0.57 [#] 14	2788.09	5/2+	[E1]			B(E1)(W.u.)=0.00025 +10-7 I _{γ} : other: <3.0 from (d,p γ).					
		1438.5 [#] 3	100 [#] 4	1694.91	5/2+	(E1)		0.0002278 32	B(E1)(W.u.)= $0.00062 + 17 - 11$ $\alpha(K)=6.92 \times 10^{-6} 10; \ \alpha(L)=4.94 \times 10^{-7} 7; \ \alpha(M)=3.25 \times 10^{-8} 5$ $\alpha(IPF)=0.0002203 31$ Mult.: D+Q with δ =-0.11 10 from (d,p γ); E1+M2 from $\Delta \pi$, where parity assignments of connecting levels are uniquely established from independent arguments; M2 component not allowed by RUL.					
3532.92	3/2-	401.1 [@] a 745.1 9 1216.0 ^a 5	<3.3 [@] 0.042 <i>14</i> <0.070	3133.11 2788.09 2316.86	7/2 ⁻ 5/2 ⁺ 3/2 ⁺				I_{γ} : other: <18 from (d,p γ).					

7

	Adopted Levels, Gammas (continued)													
						γ (³¹ Si	i) (continued)							
E _i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{&}	δ ^{&}	α^{\dagger}	Comments					
3532.92	3/2-	1837.92 <i>5</i> 2780.56 <i>3</i>	3.05 <i>17</i> 100.0 <i>34</i>	1694.91 752.23	5/2 ⁺ 1/2 ⁺	(E1(+M2))	+0.015 40	1.13×10 ⁻³ 2	E _γ : other: 1839.6 with Iγ<3.3 from (d,pγ). $\alpha(K)=2.66\times10^{-6} 4$; $\alpha(L)=1.900\times10^{-7} 27$; $\alpha(M)=1.252\times10^{-8} 18$ $\alpha(IPF)=0.001130 16$ E _γ : other: 2780.0 15 from (¹⁸ O, α nγ). I _γ : other: 100 9 from (d,pγ). Mult., δ : D(+Q) from $\gamma\gamma(\theta)$ in (d,pγ); E1(+M2) from $\Delta\pi$, where parity assignments of connecting levels are uniquely established from independent arguments					
		3532.74 8	2.48 14	0.0	$3/2^{+}$				E_{γ} : other: 3534.4 with I γ <1.1 from (d,p γ).					
3873.6	$(7/2^+)$	1086.0 [#] 20	<1.52 [#]	2788.09	5/2+									
		2179.2 [#] 15	100 [#] 8	1694.91	5/2+									
		3874.2 [#] 15	97 <mark>#</mark> 8	0.0	$3/2^{+}$									
4261.0 4382.38	3/2 ⁺ ,5/2 ⁺ 3/2 ⁻	3508.6 [#] 15 849.45 15 1594.30 6 2065.6 6	100 5.4 6 12.7 8 1.5 4	752.23 3532.92 2788.09 2316.86	$1/2^+$ $3/2^-$ $5/2^+$ $3/2^+$									
		2687.35 8	19.8 20	1694.91	5/2+				I _{γ} : weighted average of 20.4 <i>12</i> from (n, γ) E=thermal and 12 4 from (d m)					
		3629.90 4	100 4	752.23	1/2+				E_{γ} : other: 3629.8 20 from (¹⁸ O,αnγ). I_{γ} : other: 100 11 from (d,pγ).					
		4382.04 14	22.5 17	0.0	3/2+				I_{γ} : weighted average of 22.8 <i>17</i> from (n,γ) E=thermal and 18 7 from $(d,p\gamma)$.					
4719.1	$1/2^{+}$	3964 [#] 2	100	752.23	$1/2^{+}$									
4943.5		2155 [#] 2	91 ^{#} 10	2788.09	5/2+									
		3249 [#] 3	100 [#] 10	1694.91	$5/2^{+}$									
4967.5		1093.7 [#] 8	92 [#] 8	3873.6	$(7/2^+)$									
		2180 [#] 2	100 [#] 53	2788.09	$5/2^{+}$									
		3274 [#] 3	34 [#] 8	1694.91	5/2+									
4997.1		1124.2 [#] 15	13 [#] 5	3873.6	$(7/2^+)$									
		1864.1 [#] 15	100 [#] 10	3133.11	7/2-									
5281.37	(1/2)-	898.6 7 1748.38 6 2493.2 ^{<i>a</i>} 10 2964.26 18 3586.2 ^{<i>a</i>} 10	0.45 <i>13</i> 8.7 <i>5</i> <0.51 4.6 <i>5</i> <0.64	4382.38 3532.92 2788.09 2316.86 1694.91	3/2 ⁻ 3/2 ⁻ 5/2 ⁺ 3/2 ⁺ 5/2 ⁺									

 $^{31}_{14}{
m Si}_{17}$ -8

L

	Adopted Levels, Gammas (continued)												
	γ ⁽³¹ Si) (continued)												
E _i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	J_f^π	Comments							
5281.37	(1/2)-	4528.77 5	100.0 32	752.23	1/2+	E _{γ} : weighted average of 4526.4 20 from (¹⁸ O, α n γ) and 4528.77 4 from (n, γ) E=thermal.							
		5280.9 6	1.53 26	0.0	3/2+								
5311.1		2177.9 [#] 15	100	3133.11	7/2-								
5442.9	5/2-,7/2-	2654.6 [#] 15	100 [#] 16	2788.09	5/2+								
		3126.0 [#] 25	<15.6 [#]	2316.86	3/2+								
5451		3756 [#] 3	100	1694.91	5/2+								
5600.2		3905 [#] 2	100	1694.91	5/2+								
5610.9		2478.0 [#] 15	100	3133.11	7/2-								
5656.2		3961 [#] 2	100	1694.91	5/2+								
5676.9		2888.7 [#] 15	100	2788.09	5/2+								
5791.2		3003 [#] 2	100	2788.09	5/2+								
5836		4141.2 ^{#} 25	100	1694.91	5/2+								
5856		3539 [#] 3	100	2316.86	3/2+								
5873.15	$1/2^{-}, 3/2^{-}$	5872.37 18	100	0.0	$3/2^+$								
5957.92	$(1/2^-, 3/2, 5/2^+)$	3640.2 9 5956.9 8	33 <i>17</i> 100 25	2316.86	$3/2^+$ $3/2^+$								
5984.2	$(3/2^+, 5/2^+)$	2111 [#] 2	62 [#] 23	3873.6	$(7/2^+)$								
		4287 ^{#} 4	100 ^{#} 23	1694.91	5/2+								
6250.3	3/2+,5/2+	4555 2	100	1694.91	5/2+								
6418.3	$(5/2^-, 7/2^-)$	2548.0 [#] 25	100 [#] 43	3873.6	$(7/2^+)$								
		4718 [#] 3	43 [#] 14	1694.91	5/2+								
6473		4156 [#] 4	100	2316.86	3/2+								
6584.3	5/2-,7/2-	3796 [#] 3	38 [#] 25	2788.09	5/2+								
		4889 [#] 3	100 [#] 25	1694.91	5/2+								
(6587.40)	1/2+	629.43 19	0.29 4	5957.92	$(1/2^{-}, 3/2, 5/2^{+})$								
		/14.22.6	1.28 8	5281 37	$\frac{1}{2}, \frac{3}{2}$								
		2204.95 3	23.0 8	4382.38	(1/2) $3/2^{-}$								
		3054.33 3	100.0 32	3532.92	3/2-								
		3798.2 8	0.19 6	2788.09	5/2+								
		4270.1 ^{<i>a</i>}	< 0.096	2316.86	3/2+								
		4892.1° 5834.2.6	<0.137	1694.91	$5/2^{+}$								
		6586.71 <i>13</i>	2.16 19	0.0	$3/2^+$								
6661.7		2787.7 [#] 35	40 [#] 20	3873.6	$(7/2^+)$								

9

From ENSDF

 $^{31}_{14}{
m Si}_{17}$ -9

$\gamma(^{31}\text{Si})$ (continued)

E_i (level) J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$
6661.7	3873.7 [#] 22	20 [#] 13	2788.09 5/2+	7225.7		4091 ^{#} 3	46 [#] 27	3133.11	7/2-
	4966.2 [#] 22	100 [#] 20	1694.91 5/2+	7484		2173 [#] 2	100	5311.1	
6792.9	1796.2 [#] 10	40 [#] 33	4997.1	7544		4756 [#] 3	100	2788.09	$5/2^{+}$
	3658 <mark>#</mark> 2	100 [#] 67	3133.11 7/2-	7582		3708 [#] 3	100	3873.6	$(7/2^+)$
6887	3016 [#] 4	100 [#] 57	3873.6 (7/2 ⁺)	8359	5/2-,7/2-	3048 [#] 2	100	5311.1	
	5189 [#] 4	71 [#] 29	1694.91 5/2+	8389		4515 [#] 4	100	3873.6	$(7/2^+)$
7034.0	2066.4 [#] 15	100	4967.5	8926	$(1/2^-, 3/2^-)$	3615 [#] 2	100	5311.1	
7111	4794 [#] 3	100	2316.86 3/2+	9217	$(3/2^+, 5/2^+)$	4249 [#] 3	100	4967.5	
7225.7	1615.0 [#] 12	100 [#] 64	5610.9	9324		4356 [#] 3	100	4967.5	

[†] Additional information 2. [‡] From (n,γ) E=thermal, except as noted. [#] From $({}^{18}O,\alpha n\gamma)$.

[@] From (d,pγ).

[&] From angular correlation data in $(d,p\gamma)$, with electric or magnetic natures determined based RUL where $T_{1/2}$ is known, unless otherwise noted.

^{*a*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 2300 \$280.9 \$28.7 \$28.7 \$28.7 \$28.2 \$28.2 \$28.2 \$29.2 \$29.2 \$29.2 \$29.2 \$20.2 + 1/24 + (1/2)-5281.37 1.301 4997.1 4967.5 4943.5 -6 3964 1/2+ 4719.1 1 3508 100 1 3/2-4382.38 3/2+,5/2+ 4261.0 - 38742 97 - 21392 97 10860 71.32 (7/2+) 3873.6 3/2-3532.92 <10 fs <u>3133.11</u> 0.37 ps 8 7/2-2788.09 14 fs 14 5/2+ 3/2+ 2316.86 38 fs 17 <u>1694.91</u> 0.57 ps 15 5/2+ $1/2^{+}$ 752.23 0.53 ps 12 3/2+ 0.0 157.24 min 20

 $^{31}_{14}{\rm Si}_{17}$

Legend

Level Scheme (continued)

 $^{31}_{14}{
m Si}_{17}$