<sup>31</sup>Cl  $\varepsilon$ + $\beta$ <sup>+</sup> decay (190 ms) 2018Be12,2011SaZM,2006Ka11

| History         |                           |                   |                        |  |  |  |  |  |  |  |
|-----------------|---------------------------|-------------------|------------------------|--|--|--|--|--|--|--|
| Туре            | Author                    | Citation          | Literature Cutoff Date |  |  |  |  |  |  |  |
| Full Evaluation | Jun Chen and Balraj Singh | NDS 184,29 (2022) | 24-Jun-2022            |  |  |  |  |  |  |  |

Parent: <sup>31</sup>Cl: E=0;  $J^{\pi}=3/2^+$ ;  $T_{1/2}=190$  ms *1*;  $Q(\varepsilon)=12008$  3;  $\%\varepsilon+\%\beta^+$  decay=100

<sup>31</sup>Cl-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From <sup>31</sup>Cl Adopted Levels.

<sup>31</sup>Cl-Q(ε): From 2021Wa16.

<sup>31</sup>Cl- $\%\epsilon$ + $\%\beta^+$  decay:  $\%\epsilon$ p=2.4 2 for <sup>31</sup>Cl decay (2011SaZM). Other: 0.65% 5 (2006Ka11).

2018Be12, 2016Be05, 2016Be19: <sup>31</sup>Cl ions were produced in <sup>9</sup>Be(<sup>36</sup>Ar,X), E(<sup>36</sup>Ar)=150 MeV/nucleon reaction at the Coupled Cyclotron Facility of NSCL-MSU. The ions of interest were separated based on B $\rho$  and tof techniques using A1900 Fragment Separator for B $\rho$  and Radio Frequency Fragment Separator (RFFS) for tof. Contaminants in the <sup>31</sup>Cl beam were  $\approx 2\%$  <sup>24</sup>Na,  $\approx 1.5\%$  <sup>29</sup>P, small amount of stable <sup>28</sup>Si and other light-ion beams. The beam was implanted in a 25-mm thick plastic scintillator, which also acted as a  $\beta$  detector. The  $\gamma$  rays were detected in coincidence with  $\beta$  rays using Yale Clovershare array comprised of nine HPGe Clover detectors. Measured E $\gamma$ , I $\gamma$ ,  $\beta\gamma$ -coin,  $\beta\gamma\gamma$ -coin. Deduced levels, resonances,  $\beta$  feedings, isospin mixing, ratio of thermonuclear reaction rates for <sup>30</sup>P(p, $\gamma$ )<sup>31</sup>S reaction at T<sub>9</sub>=0.1-0.4 for the newly discovered state at 6390 keV and the IAS at 6280 keV.

2022Bu14: <sup>31</sup>Cl ions were produced by fragmentation of a 150 MeV/nucleon <sup>36</sup>Ar beam on a 1645 mg/cm<sup>2</sup> Be production target, separated and purified by the A1900 fragment separator and the the Radio Frequency Fragment Separator (RFFS), and transported into the Gaseous Detector with Germanium Tagging (GADGET) system consisting a customized gas-filled proportional counter called Proton detector (Pd) surrounded by the SeGA array of 16 HPGe crystals. Measured E(p) and I(p) of  $\beta$ -delayed protons, p $\gamma$ -coin. Deduced proton resonance energy, proton-decay branching ratio, resonance of the 6390 level. Discussed impact on the <sup>31</sup>P(p, $\gamma$ )<sup>31</sup>S astrophysical reaction rate.

2011SaZM: <sup>31</sup>Cl produced in <sup>32</sup>S(p,2n) E=40 MeV/nucleon reaction and separated using MARS recoil spectrometer at Texas A&M University accelerator facility. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ , Ep, Ip; deduced decay scheme, IAS in <sup>31</sup>S and mass excess of <sup>31</sup>Cl. See also articles by Trache et al. in POS (NIC X), 163 (2009); 2012Tr08 and 2011SaZN. Additional information 1.

2006Ka11 (also 2005Ka46): E=40,45 MeV protons on ZnS target producing <sup>31</sup>Cl through fusion evaporation reaction <sup>32</sup>S(p,2n) at IGISOL. Measured E $\gamma$ , I $\gamma$ , E(p), I(p),  $\beta\gamma$  coin, proton spectra. Positrons detected with ISOLDE Silicon Ball array of 36 Si detectors,  $\gamma$ -rays were detected by an HPGe detector, protons by DSSSDs.

1985Ay02 (also 1983Ay02, 1982Ay01): E=28-50 MeV protons from LBL cyclotron on ZnS target. Measured delayed protons, deduced log *ft* values. Total of eight observed proton branches reported.

1996Og01: reported two levels, and two proton branches.

#### <sup>31</sup>S Levels

Following levels, proposed by 2011SaZM through only a ground-state transition from each, are not confirmed by 2018Be12, and are omitted in the present decay scheme: 5408, 5786, 6421, 7280, 7417, 7632, and 7644; most of these were tentative in 2011SaZM.

| E(level) <sup>†</sup> | J <sup>π#</sup> | $T_{1/2}^{\#}$ | Comments                                  |
|-----------------------|-----------------|----------------|-------------------------------------------|
| 0.0                   | $1/2^{+}$       | 2.5534 s 18    |                                           |
| 1248.45 11            | $3/2^{+}$       | 0.50 ps 12     |                                           |
| 2234.06 12            | $5/2^{+}$       | 222 fs 55      |                                           |
| 3076.44 15            | $1/2^{+}$       |                |                                           |
| 3283.76 13            | $5/2^{+}$       |                |                                           |
| 3349.40 20            | $7/2^{+}$       |                | E(level): level proposed by 2018Be12.     |
| 3434.78 19            | $3/2^{+}$       |                |                                           |
| 4086.21 19            | $5/2^{+}$       |                | E(level): level proposed by 2018Be12.     |
| 4207.69 16            | $(3/2)^+$       |                | $J^{\pi}$ : 3/2 <sup>+</sup> in 2018Be12. |
| 4519.71 25            | $3/2^{+}$       |                |                                           |
| 4717.79 14            | $(5/2)^+$       |                | $J^{\pi}$ : 5/2 <sup>+</sup> in 2018Be12. |
| 4866.03 23            | $(1/2)^+$       |                | $J^{\pi}$ : 1/2 <sup>+</sup> in 2018Be12. |
| 4970.6 9              | $(3/2)^{-}$     |                | E(level): level proposed by 2018Be12.     |
|                       |                 |                | $J^{\pi}$ : $3/2^{-}$ in 2018Be12.        |

## <sup>31</sup>Cl ε+ $β^+$ decay (190 ms) 2018Be12,2011SaZM,2006Ka11 (continued)

## <sup>31</sup>S Levels (continued)

| E(level) <sup>†</sup>        | $J^{\pi \#}$                                            | Comments                                                                                                                                                                                                                         |
|------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5022.07 24                   | 5/2+                                                    | E(level): level proposed by 2018Be12.                                                                                                                                                                                            |
| 5156.1 4                     | $1/2^{+}$                                               |                                                                                                                                                                                                                                  |
| 5436.0 8                     | $(3/2^+)$                                               | E(level): level proposed by 2018Be12.<br>$J^{\pi}$ : 3/2 <sup>+</sup> in 2018Be12.                                                                                                                                               |
| 5775.4 <i>3</i>              | $(5/2)^+$                                               | $J^{\pi}$ : 5/2 <sup>+</sup> in 2018Be12.                                                                                                                                                                                        |
| 5890.1 <i>3</i>              | $(3/2)^+$                                               | E(level): level proposed by 2018Be12.<br>$J^{\pi}$ : 3/2 <sup>+</sup> in 2018Be12.                                                                                                                                               |
| 6129.1 6                     | (5/2 <sup>+</sup> )                                     | E(level): level proposed by 2018Be12.<br>$J^{\pi}$ : 5/2 <sup>+</sup> in 2018Be12.                                                                                                                                               |
| 6254.8 <i>3</i>              | $1/2^{+}$                                               | T = 1/2                                                                                                                                                                                                                          |
| 6278.89 14                   | 3/2+                                                    | T=3/2                                                                                                                                                                                                                            |
| 6390.23 17                   | 3/2+                                                    | E(level), $J^{\pi}$ : IAS of <sup>31</sup> Cl g.s. 2011SaZM give E(level)=6280.2 <i>3</i> . %p=0.025 +4-3 (2022Bu14)                                                                                                             |
|                              |                                                         | E(level),J <sup><math>\pi</math></sup> : new level proposed by 2016Be05, unambiguous J <sup><math>\pi</math></sup> assignment made from identification of this level as isospin mixed with the IAR at 6279.0, 3/2 <sup>+</sup> . |
|                              |                                                         | E(p)(resonance)=260.3 keV 8; L=0 resonance in proton capture on ${}^{30}P(g.s. J^{\pi}=1^+)$ , relevant to ${}^{30}P(p,\gamma){}^{31}S$ reaction rates of astrophysical significance. Other: 273 <i>10</i> (2022Bu14).           |
|                              |                                                         | this level by 2018Be12 and $\beta$ -delayed proton emission I( $\beta$ p)=8.3×10 <sup>-6</sup> +12-9 from this level by 2022Bu14.                                                                                                |
| 6936 <sup>‡</sup> 2          | $1/2^+, 3/2^+, 5/2^+$                                   | E(p)=780 2 (2011SaZM), 762 14 (2006Ka11).                                                                                                                                                                                        |
|                              |                                                         | Relative I(p)= $20.4 \ 2 \ (2011SaZM), \ 9.1 \ 22 \ (2006Ka11).$<br>I(p)/I $\gamma$ (2234 $\gamma$ )= $0.43 \ I \ (2011SaZM), \ 0.10 \ 3 \ (2006Ka11).$                                                                          |
| 7037‡2                       | $(5/2)^+$                                               | E(level): E(p)=877 2 (2011SaZM), 853 18 (2006Ka11).                                                                                                                                                                              |
|                              |                                                         | Relative $I(p)=12.4$ 2 (2011SaZM), 1.2 12 (2006Ka11).<br>$I(p)/I\gamma(2234\gamma)=0.26$ 1 (2011SaZM), 0.013 13 (2006Ka11).                                                                                                      |
| 7050.1 8                     | $(1/2^+, 3/2^+, 5/2^+)$                                 | E(level): level proposed by 2018Be12.<br>$J^{\pi}$ : 1/2 <sup>+</sup> in 2018Be12.                                                                                                                                               |
| 7149.9 8                     | 5/2+,3/2+,1/2+                                          | E(level): level proposed by 2018Be12.<br>$J^{\pi}$ : 5/2 <sup>+</sup> in 2018Be12.                                                                                                                                               |
| 7157‡2                       | $3/2^+, 5/2^+$                                          | E(p)=993 2 (2011SaZM), 978 15 (2006Ka11), also seen in 1996Og01.                                                                                                                                                                 |
|                              |                                                         | Relative I(p)=100 4 (2011SaZM), 100 4 (2006Ka11).<br>I(p)/I $\gamma$ (2234 $\gamma$ )=2.12 3 (2011SaZM), 1.08 14 (2006Ka11).                                                                                                     |
| 7355 <sup>‡</sup> 3          | $1/2^+, 3/2^+, 5/2^+$                                   | E(p)=1185 3 (2011SaZM), 1175 19 (2006Ka11).                                                                                                                                                                                      |
|                              |                                                         | Relative I(p)=2.7 <i>I</i> (2011SaZM), 1.7 <i>6</i> (2006Ka11).<br>I(p)/I $\gamma$ (2234 $\gamma$ )=0.057 <i>3</i> (2011SaZM), 0.018 7 (2006Ka11).                                                                               |
| 7521? <sup>‡</sup> <i>17</i> |                                                         | $E(p)=1345 \ 17 \ (2011SaZM).$                                                                                                                                                                                                   |
|                              |                                                         | Relative I(p)=1.3 12 (2011SaZM).<br>I(p)/I $\gamma$ (2234 $\gamma$ )=0.028 26 (2011SaZM).                                                                                                                                        |
| 7701 <sup>‡</sup> 3          | 1/2+,3/2+,5/2+                                          | E(p)=1520 3 (2011SaZM), 1521 20 (2006Ka11), also seen in 1996Og01.                                                                                                                                                               |
|                              |                                                         | Relative I(p)=21.0 4 (2011SaZM), 13.6 14 (2006Ka11).<br>I(p)/Ιγ(2234γ)=0.44 1 (2011SaZM), 0.15 3 (2006Ka11).                                                                                                                     |
| 7778 <sup>‡</sup> 17         | (1/2 <sup>+</sup> ,3/2 <sup>+</sup> ,5/2 <sup>+</sup> ) | $E(p)=1594 \ 17 \ (2011SaZM).$ Relative I(p)=1.4 2 (2011SaZM).<br>I(p)/I $\gamma$ (2234 $\gamma$ )=0.030 4 (2011SaZM).                                                                                                           |
| 7894 <sup>‡</sup> <i>3</i>   | 1/2+,3/2+,5/2+                                          | $E(p)=1706 \ 3 \ (2011SaZM), \ 1688 \ 22 \ (2006Ka11).$<br>Relative I(p)=6.4 2 \ (2011SaZM), 3.9 7 \ (2006Ka11).<br>I(p) $J_{2}(2234_{2}) = 0.136 \ 5 \ (2011SaZM), 0.043 \ 9 \ (2006Ka11).$                                     |
| 8022 <sup>‡</sup> 3          | 1/2+,3/2+,5/2+                                          | $E(p)=1830 \ 3 \ (2011SaZM), \ 1825 \ 23 \ (2006Ka11).$<br>Relative I(p)=10.9.2 (2011SaZM), 8.8 <i>11</i> (2006Ka11).                                                                                                            |
|                              |                                                         | $I(p)/I\gamma(2234\gamma)=0.2315$ (2011SaZM), 0.096 16 (2006Ka11).                                                                                                                                                               |
| 8122 <sup>‡</sup> <i>17</i>  | 1/2+,3/2+,5/2+                                          | $E(p)=1927 \ 17 \ (2011SaZM).$<br>Relative $I(p)=1.4 \ 1 \ (2011SaZM).$                                                                                                                                                          |

## <sup>31</sup>Cl $\varepsilon + \beta^+$ decay (190 ms) 2018Be12,2011SaZM,2006Ka11 (continued)

#### <sup>31</sup>S Levels (continued)

| E(level) <sup>†</sup>       | $J^{\pi \#}$                                            | Comments                                                                                                                                                                                                                                                                                              |
|-----------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                                         | $I(p)/I\gamma(2234\gamma)=0.031\ 2\ (2011SaZM).$                                                                                                                                                                                                                                                      |
| 8270 <sup>‡</sup> <i>17</i> | 1/2+,3/2+,5/2+                                          | E(p)=2070 <i>17</i> (2011SaZM), 2075 <i>30</i> (2006Ka11).<br>Relative I(p)=1.3 <i>1</i> (2011SaZM), 1.3 <i>5</i> (2006Ka11).<br>I(p)/Iy(2234y)=0.028 <i>2</i> (2011SaZM), 0.014 <i>5</i> (2006Ka11).                                                                                                 |
| 8429 <sup>‡</sup> <i>3</i>  | 1/2+,3/2+,5/2+                                          | $E(p)=2224 \ 3 \ (2011SaZM), \ 2217 \ 30 \ (2006Ka11).$<br>Relative I(p)=2.3 1 (2011SaZM), 4.1 8 (2006Ka11).<br>I(p)/I $\gamma$ (2234 $\gamma$ )=0.048 2 (2011SaZM), 0.044 10 (2006Ka11).                                                                                                             |
| 8499 <sup>‡</sup> 17        | 1/2+                                                    | J <sup><math>\pi</math></sup> : assuming this level corresponds to L=0, 8517 <i>13</i> level in (p,d).<br>E(p)=2286 <i>17</i> (2011SaZM), 2299 <i>30</i> (2006Ka11).<br>Relative I(p)=0.9 7 (2011SaZM), 1.5 5 (2006Ka11).<br>I(p)/I $\gamma$ (2234 $\gamma$ )=0.018 2 (2011SaZM), 0.016 6 (2006Ka11). |
| 8702 <sup>‡</sup> <i>17</i> | 1/2+,3/2+,5/2+                                          | $E(p)=2489 \ 17 \ (2011SaZM), \ 2454 \ 40 \ (2006Ka11).$<br>Relative I(p)=0.91 6 (2011SaZM), 1.0 4 (2006Ka11).<br>I(p)/I $\gamma$ (2234 $\gamma$ )=0.019 2 (2011SaZM), 0.010 4 (2006Ka11).                                                                                                            |
| 8860 <sup>‡</sup> 17        | (1/2 <sup>+</sup> ,3/2 <sup>+</sup> ,5/2 <sup>+</sup> ) | $\begin{split} E(p) = & 2641 \ 17 \ (2011SaZM), \ 2601 \ 40 \ (2006Ka11). \\ Relative I(p) = & 0.19 \ 4 \ (2011SaZM), \ 0.4 \ 3 \ (2006Ka11). \\ I(p)/I\gamma(2234\gamma) = & 0.004 \ 1 \ (2011SaZM), \ 0.004 \ 3 \ (2006Ka11). \end{split}$                                                          |
| 9031 <sup>‡</sup> <i>17</i> | 1/2+,3/2+,5/2+                                          | E(p)=2807 17 (2011SaZM), 2751 40 (2006Ka11).<br>Relative I(p)=0.3 1 (2011SaZM), 0.6 3 (2006Ka11).<br>I(p)/Iγ(2234γ)=0.006 2 (2011SaZM), 0.007 4 (2006Ka11).                                                                                                                                           |

 $^{\dagger}$  From a least-squares fit to  $E\gamma$  data, unless otherwise stated.

<sup>‡</sup> Excitation energy deduced by the evaluators from center of mass frame proton energies taken from 2011SaZM and S(p)=6130.65 24 (2021Wa16).

<sup>#</sup> From the Adopted Levels.

#### $\varepsilon,\beta^+$ radiations

Sum of  $I(\varepsilon+\beta)=90.4$  could indicate the decay scheme is not complete, also considering that the total released energy of 10700 260 calculated by the RADLIST code is less than  $Q(\beta^-)$ value=12008 3 (2021Wa16). The missing 10% 4 may be accounted for by possible unobserved weak proton emissions from unobserved levels within the large gap between the highest observed level at 9031 and  $Q(\beta^-)$ value=12008 3.

| E(decay)  | E(level) | $\mathrm{I}\beta^+$ ‡ | Ie‡                     | Log ft  | $\mathrm{I}(\varepsilon\!+\!\beta^+)^{\dagger\ddagger}$ | Comments                                                                                                                         |
|-----------|----------|-----------------------|-------------------------|---------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| (2977 17) | 9031     | 0.004 1               | 4.×10 <sup>-5</sup> 1   | 5.4 1   | 0.004 1                                                 | av E $\beta$ =848.6 81; $\varepsilon$ K=0.00846 23; $\varepsilon$ L=0.000797 22;<br>$\varepsilon$ M+=9.7×10 <sup>-5</sup> 3      |
| (3148 17) | 8860     | 0.0025 6              | $1.8 \times 10^{-5} 4$  | 5.74 11 | 0.0025 6                                                | av E $\beta$ =928.1 81; $\varepsilon$ K=0.00657 17; $\varepsilon$ L=0.000619 16;<br>$\varepsilon$ M+=7.56×10 <sup>-5</sup> 19    |
| (3306 17) | 8702     | 0.012 2               | 7.0×10 <sup>-5</sup> 12 | 5.19 8  | 0.012 2                                                 | av E $\beta$ =1002.2 82; $\varepsilon$ K=0.00530 13; $\varepsilon$ L=0.000499 12;<br>$\varepsilon$ M+=6.10×10 <sup>-5</sup> 14   |
| (3509 17) | 8499     | 0.011 2               | 5.0×10 <sup>-5</sup> 9  | 5.39 8  | 0.011 2                                                 | av E $\beta$ =1097.9 82; $\varepsilon$ K=0.00410 9; $\varepsilon$ L=0.000386 9;<br>$\varepsilon$ M+=4.72×10 <sup>-5</sup> 10     |
| (3579 5)  | 8429     | 0.030 2               | 0.00013 1               | 5.01 3  | 0.030 2                                                 | av E $\beta$ =1131.0 20; $\varepsilon$ K=0.003778 19; $\varepsilon$ L=0.0003556 1;<br>$\varepsilon$ M+=4.345×10 <sup>-5</sup> 22 |
| (3738 17) | 8270     | 0.017 2               | 5.9×10 <sup>-5</sup> 7  | 5.37 6  | 0.017 2                                                 | av E $\beta$ =1206.4 82; $\varepsilon$ K=0.00315 6; $\varepsilon$ L=0.000297 6;<br>$\varepsilon$ M+=3.63×10 <sup>-5</sup> 7      |
| (3886 17) | 8122     | 0.019 2               | 5.7×10 <sup>-5</sup> 6  | 5.43 5  | 0.019 2                                                 | av E $\beta$ =1276.9 83; $\varepsilon$ K=0.00269 5; $\varepsilon$ L=0.000253 5;<br>$\varepsilon$ M+=3.10×10 <sup>-5</sup> 6      |
| (3986 5)  | 8022     | 0.143 3               | 0.000384 9              | 4.62 1  | 0.143 3                                                 | av Eβ=1324.6 21; εK=0.002429 11; εL=0.0002287 1;                                                                                 |

|                                            |          | $^{31}$ Cl $\varepsilon$ + $\mu$ | <sup>8+</sup> decay (190 n       | ns) <b>2018B</b> | e12,2011SaZM                                  | I,2006Ka11 (continued)                                                                                                                                                                      |  |  |  |  |
|--------------------------------------------|----------|----------------------------------|----------------------------------|------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\epsilon, \beta^+$ radiations (continued) |          |                                  |                                  |                  |                                               |                                                                                                                                                                                             |  |  |  |  |
| E(decay)                                   | E(level) | Iβ <sup>+</sup> ‡                | $\mathrm{I}arepsilon^{\ddagger}$ | Log ft           | $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ | Comments                                                                                                                                                                                    |  |  |  |  |
| (4114 5)                                   | 7894     | 0.084 3                          | 0.00020 1                        | 4.93 2           | 0.084 3                                       | $\varepsilon M += 2.794 \times 10^{-5} I2$<br>av E $\beta = 1386.0 2I$ ; $\varepsilon K = 0.002142 9$ ; $\varepsilon L = 0.0002016 9$ ;<br>$\varepsilon M = 2.463 \times 10^{-5} II$        |  |  |  |  |
| (4230 17)                                  | 7778     | 0.019 3                          | $4.0 \times 10^{-5} 6$           | 5.65 7           | 0.019 3                                       | av $E\beta = 1441.6 \ 83; \ \varepsilon E = 0.00192 \ 4; \ \varepsilon L = 0.000181 \ 3;$                                                                                                   |  |  |  |  |
| (4307 5)                                   | 7701     | 0.27 1                           | 0.00053 2                        | 4.54 2           | 0.27 1                                        | $\varepsilon M^{+}=2.21\times 10^{-5} 4$<br>av E $\beta$ =1478.6 21; $\varepsilon K$ =0.001788 7; $\varepsilon L$ =0.0001683 7;<br>$\varepsilon M^{+}=2.056\times 10^{-5} 8$                |  |  |  |  |
| (4487 <sup>#</sup> 17)                     | 7521?    | 0.02 2                           | 3.×10 <sup>-5</sup> 3            | 5.8 5            | 0.02 2                                        | av E $\beta$ =1565.2 84; $\varepsilon$ K=0.001526 23; $\varepsilon$ L=0.0001436                                                                                                             |  |  |  |  |
| (4653 5)                                   | 7355     | 0.035 2                          | 5.1×10 <sup>-5</sup> 3           | 5.62 3           | 0.035 2                                       | av E $\beta$ =1645.2 21; $\varepsilon$ K=0.001327 5; $\varepsilon$ L=0.0001249 5;<br>$\varepsilon$ M=1.526×10 <sup>-5</sup> 6                                                               |  |  |  |  |
| (4851 4)                                   | 7157     | 1.31 2                           | 0.00164 3                        | 4.16 1           | 1.31 2                                        | av E $\beta$ =1741.0 18; $\varepsilon$ K=0.001133 4; $\varepsilon$ L=0.0001067 3;<br>$\varepsilon$ M+=1.303×10 <sup>-5</sup> 4                                                              |  |  |  |  |
| (4858.1 33)                                | 7149.9   | 0.059 7                          | 7.4×10 <sup>-5</sup> 9           | 5.51 6           | 0.059 7                                       | av E $\beta$ =1744.4 15; $\varepsilon$ K=0.001127 3; $\varepsilon$ L=0.0001061 3;<br>$\varepsilon$ M+=1 296×10 <sup>-5</sup> 4                                                              |  |  |  |  |
| (4957.9 33)                                | 7050.1   | 0.047 5                          | 5.4×10 <sup>-5</sup> 6           | 5.65 5           | 0.047 5                                       | av E $\beta$ =1792.7 15; $\varepsilon$ K=0.0010444 2; $\varepsilon$ L=9.828×10 <sup>-5</sup><br>23: $\varepsilon$ M+=1 201×10 <sup>-5</sup> 3                                               |  |  |  |  |
| (4971 4)                                   | 7037     | 0.16 1                           | 0.00018 1                        | 5.13 3           | 0.16 1                                        | av E $\beta$ =1799.1 18; $\varepsilon$ K=0.001034 3; $\varepsilon$ L=9.73×10 <sup>-5</sup><br>3: $\varepsilon$ M+=1 189×10 <sup>-5</sup> 4                                                  |  |  |  |  |
| (5072 4)                                   | 6936     | 0.27 1                           | 0.00029 1                        | 4.95 2           | 0.27 1                                        | av E $\beta$ =1848.1 18; $\varepsilon$ K=0.000959 3; $\varepsilon$ L=9.028×10 <sup>-5</sup><br>24: $\varepsilon$ M+=1 103×10 <sup>-5</sup> 3                                                |  |  |  |  |
| (5617.8 32)                                | 6390.23  | 3.40 11                          | 0.00248 8                        | 4.10 2           | 3.40 11                                       | av E $\beta$ =2113.6 15; $\varepsilon$ K=0.0006592 1; $\varepsilon$ L=6.203×10 <sup>-5</sup><br>12: $\varepsilon$ M+=7.579×10 <sup>-6</sup> 15                                              |  |  |  |  |
| (5729.1 32)                                | 6278.89  | 18.7 7                           | 0.0127 5                         | 3.411 17         | 18.7 7                                        | av E $\beta$ =2167.9 15; $\varepsilon$ K=0.0006140 1; $\varepsilon$ L=5.777×10 <sup>-5</sup>                                                                                                |  |  |  |  |
|                                            |          |                                  |                                  |                  |                                               | $I\beta^+$ : other: 24.3% from large-scale sd shell model,<br>23% from pure single particle estimate for the<br>Gamow Teller decay probability (2006Ka11)                                   |  |  |  |  |
| $(5753 \ 2 \ 32)$                          | 6254.8   | 0 57 4                           |                                  | 4 94 3           | 0 57 4                                        | $F_{av} = F_{av} = 2179.7 I_5$                                                                                                                                                              |  |  |  |  |
| (5753.2, 52)<br>(5878, 9, 32)              | 6129.1   | $0.37 \neq$<br>0.0259 24         |                                  | 6334             | $0.37 \neq$<br>0.0259.24                      | av $E\beta = 2241 + 15$<br>av $F\beta = 2241 + 15$                                                                                                                                          |  |  |  |  |
| (6117.9.32)                                | 5890.1   | 0.269 16                         |                                  | 5.41.3           | 0.269 16                                      | av $E\beta = 2358.3.19$                                                                                                                                                                     |  |  |  |  |
| (6232.6 32)                                | 5775.4   | 0.254 21                         |                                  | 5.48 4           | 0.254 21                                      | av $E\beta = 2414.5$ 15                                                                                                                                                                     |  |  |  |  |
| (6572.0 33)                                | 5436.0   | 0.023 7                          |                                  | 6.7 2            | 0.023 7                                       | av $E\beta = 2580.9 \ 16$                                                                                                                                                                   |  |  |  |  |
| (6851.9 32)                                | 5156.1   | 0.93 8                           |                                  | 5.15 4           | 0.93 8                                        | av $E\beta = 2718.4 \ 15$                                                                                                                                                                   |  |  |  |  |
| (6985.9 32)                                | 5022.07  | 0.273 14                         |                                  | 5.72 2           | 0.273 14                                      | av E $\beta$ =2784.3 15                                                                                                                                                                     |  |  |  |  |
| (7037.4 <sup>#</sup> 33)                   | 4970.6   | 0.037 7                          |                                  | 6.6 1            | 0.037 7                                       | av E <i>B</i> =2809.6 <i>16</i>                                                                                                                                                             |  |  |  |  |
| (7142.0 32)                                | 4866.03  | 1.64 7                           |                                  | 5.00 2           | 1.64 7                                        | av $E\beta = 2860.7 \ 15$                                                                                                                                                                   |  |  |  |  |
| (7290.2 32)                                | 4717.79  | 1.55 6                           |                                  | 5.07 2           | 1.55 6                                        | av E $\beta$ =2933.6 15                                                                                                                                                                     |  |  |  |  |
| (7488.3 32)                                | 4519.71  | 1.13 7                           |                                  | 5.27 3           | 1.13 7                                        | av $E\beta = 3031.2 \ 15$                                                                                                                                                                   |  |  |  |  |
| (7800.3 32)                                | 4207.69  | 4.10 21                          |                                  | 4.81 2           | 4.10 21                                       | av Eβ=3185.1 15                                                                                                                                                                             |  |  |  |  |
| (7921.8 32)                                | 4086.21  | 0.74 4                           |                                  | 5.59 <i>3</i>    | 0.74 4                                        | av E $\beta$ =3245.0 15                                                                                                                                                                     |  |  |  |  |
| (8573.2 32)                                | 3434.78  | 0.64 4                           |                                  | 5.84 <i>3</i>    | 0.64 4                                        | av E $\beta$ =3566.8 15                                                                                                                                                                     |  |  |  |  |
| (8724.2 32)                                | 3283.76  | 4.46 25                          |                                  | 5.03 3           | 4.46 25                                       | av E $\beta$ =3641.5 15                                                                                                                                                                     |  |  |  |  |
|                                            |          |                                  |                                  |                  |                                               | $I(\varepsilon + \beta^+)$ : 4.64 32 (2018Be12).                                                                                                                                            |  |  |  |  |
| (8931.6 32)                                | 3076.44  | 2.54 14                          |                                  | 5.33 3           | 2.54 14                                       | av E $\beta$ =3744.1 <i>15</i><br>I( $\varepsilon$ + $\beta$ <sup>+</sup> ): 2.58 <i>18</i> (2018Be12).                                                                                     |  |  |  |  |
| (9773.9 32)                                | 2234.06  | 38 <i>3</i>                      | 0.0041 3                         | 4.37 4           | 38 <i>3</i>                                   | av E $\beta$ =4161.5 <i>15</i> ; $\varepsilon$ K=9.763×10 <sup>-5</sup> <i>10</i> ;<br>$\varepsilon$ L=9.183×10 <sup>-6</sup> <i>10</i> ; $\varepsilon$ M+=1.1220×10 <sup>-6</sup> <i>1</i> |  |  |  |  |
|                                            |          |                                  |                                  |                  |                                               | $I(\varepsilon + \beta^+)$ : 47 4 (2018Be12).                                                                                                                                               |  |  |  |  |
| (10759.6 32)                               | 1248.45  | 1.1 6                            |                                  | 6.1 3            | 1.1 6                                         | av E $\beta$ =4650.5 <i>15</i><br>I( $\varepsilon + \beta^+$ ): 2.5 6 (2018Be12).                                                                                                           |  |  |  |  |
| (12008.0 33)                               | 0.0      | ≈7                               |                                  | ≈5.6             | ≈7                                            | av E $\beta$ =5270.9 15<br>I( $\varepsilon$ + $\beta$ <sup>+</sup> ): 7 2 estimated by 2006Kal1 based on                                                                                    |  |  |  |  |

<sup>31</sup>Cl  $\varepsilon$ + $\beta$ <sup>+</sup> decay (190 ms) 2018Be12,2011SaZM,2006Ka11 (continued)

## $\epsilon, \beta^+$ radiations (continued)

E(decay) E(level) Comments

similar log ft value of 5.53 for  $3/2^+$  parent to  $1/2^+$  g.s.  $\beta$  transition in the decay of  $3^1$ Si mirror nucleus to <sup>31</sup>P.

<sup>†</sup> From  $\gamma$ -intensity balances considering corrections for internal conversion are negligible. Above 6.9 MeV excitation, values are deduced from proton intensities in 2011SaZM.

<sup>±</sup> Absolute intensity per 100 decays.
 <sup>#</sup> Existence of this branch is questionable.

5

|                                       |                          | $^{31}$ Cl $\varepsilon$ + $\beta$ | + decay              | (190 ms)  | 2018Be12,2           | 011SaZM,2006K      | Sal1 (continued) |                         |                                                                                                                                                                                                              |
|---------------------------------------|--------------------------|------------------------------------|----------------------|-----------|----------------------|--------------------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                          |                                    |                      |           |                      |                    | $\gamma(^{31}S)$ |                         |                                                                                                                                                                                                              |
| I $\gamma$ normalization              | n: 2018Be12              | give intensi                       | ties per 1           | 00 decays | of the pa            | arent.             |                  |                         |                                                                                                                                                                                                              |
| $E_{\gamma}^{\dagger}$                | $I_{\gamma}^{\dagger b}$ | E <sub>i</sub> (level)             | $\mathbf{J}_i^{\pi}$ | $E_f$     | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup> | $\delta^{a}$     | α <sup>c</sup>          | Comments                                                                                                                                                                                                     |
| <sup>x</sup> 846.0 <sup>&amp;</sup> 3 | 1.7 <sup>&amp;</sup> 1   |                                    |                      |           |                      |                    |                  |                         |                                                                                                                                                                                                              |
| 985.62 23                             | 0.187 9                  | 2234.06                            | 5/2+                 | 1248.45   | $3/2^{+}$            |                    |                  |                         | Eγ=985.5 <i>3</i> , Iγ=0.3 <i>1</i> (2011SaZM).                                                                                                                                                              |
| 1049.66 21                            | 1.40 5                   | 3283.76                            | 5/2+                 | 2234.06   | 5/2+                 | (M1+E2)            |                  |                         | $E\gamma = 1049.0 \ 3, \ I\gamma = 2.1 \ I \ (2011SaZM).$                                                                                                                                                    |
| 1248.40 20                            | 12.3 5                   | 1248.45                            | 3/2+                 | 0.0       | 1/2+                 | M1+E2              | +0.35 2          | 3.58×10 <sup>-5</sup> 5 | $\alpha(K)=2.123\times10^{-5} 30; \ \alpha(L)=1.637\times10^{-6} 23; \alpha(M)=1.381\times10^{-7} 20 \alpha(IPF)=1.276\times10^{-5} 19 Ey=1247.6 3, Iy=24.0 3 (2011SaZM). Ey=1249.1 14, Iy=32 7 (2006Ka11).$ |
| 1283.32 <sup>‡</sup> <i>37</i>        | 0.043 7                  | 4717.79                            | $(5/2)^+$            | 3434.78   | $3/2^{+}$            |                    |                  |                         |                                                                                                                                                                                                              |
| 1368.34 <sup>‡</sup> 29               | ≤0.018                   | 4717.79                            | $(5/2)^+$            | 3349.40   | 7/2+                 |                    |                  |                         |                                                                                                                                                                                                              |
| 1412.91 <sup>‡</sup> <i>30</i>        | 0.082 7                  | 6278.89                            | $3/2^{+}$            | 4866.03   | $(1/2)^+$            |                    |                  |                         |                                                                                                                                                                                                              |
| 1433.89 <sup>‡</sup> 22               | 0.399 22                 | 4717.79                            | $(5/2)^+$            | 3283.76   | $5/2^{+}$            |                    |                  |                         |                                                                                                                                                                                                              |
| 1561.01 <sup>‡</sup> 29               | 0.104 8                  | 6278.89                            | 3/2+                 | 4717.79   | $(5/2)^+$            |                    |                  |                         |                                                                                                                                                                                                              |
| 1672.53 <sup>‡</sup> 29               | 0.114 9                  | 5022.07                            | 5/2+                 | 3349.40   | 7/2+                 | (M1)               |                  | 0.0001332 19            | $\alpha(K)=1.234\times10^{-5}$ 17; $\alpha(L)=9.51\times10^{-7}$ 13;<br>$\alpha(M)=8.03\times10^{-8}$ 11<br>$\alpha(IPF)=0.0001198$ 17                                                                       |
| 1738.52 <sup>‡</sup> <i>36</i>        | 0.063 7                  | 5022.07                            | $5/2^{+}$            | 3283.76   | $5/2^{+}$            |                    |                  |                         |                                                                                                                                                                                                              |
| 1759.05 <sup>‡</sup> <i>34</i>        | 0.072 8                  | 6278.89                            | $3/2^{+}$            | 4519.71   | $3/2^{+}$            |                    |                  |                         |                                                                                                                                                                                                              |
| 1827.93 <sup>‡</sup> 25               | 0.205 14                 | 3076.44                            | $1/2^{+}$            | 1248.45   | $3/2^{+}$            |                    |                  |                         |                                                                                                                                                                                                              |
| 1852.19 <sup>‡</sup> 25               | 0.211 14                 | 4086.21                            | 5/2+                 | 2234.06   | $5/2^{+}$            |                    |                  |                         |                                                                                                                                                                                                              |
| 2035.24 20                            | 4.38 22                  | 3283.76                            | 5/2+                 | 1248.45   | 3/2+                 | (M1+E2)            |                  | 0.00031 4               | $\alpha(K)=9.4\times10^{-6} 5; \ \alpha(L)=7.2\times10^{-7} 4; \ \alpha(M)=6.10\times10^{-8} 32 \ \alpha(IPF)=0.00030 4 \ E\gamma=2035.2 2, \ I\gamma=7.2 3 \ (2011SaZM).$                                   |
| 2071.11 <sup>‡</sup> 22               | 0.577 32                 | 6278.89                            | $3/2^{+}$            | 4207.69   | $(3/2)^+$            |                    |                  |                         |                                                                                                                                                                                                              |
| 2100.79 <sup>‡</sup> 25               | 0.076 14                 | 3349.40                            | 7/2+                 | 1248.45   | 3/2+                 | (E2)               |                  | 0.000374 5              | $\alpha(K)=9.30\times10^{-6}$ 13; $\alpha(L)=7.17\times10^{-7}$ 10;<br>$\alpha(M)=6.05\times10^{-8}$ 8<br>$\alpha(IPF)=0.000364$ 5                                                                           |
| 2182.52 <sup>‡</sup> 25               | 0.210 16                 | 6390.23                            | $3/2^{+}$            | 4207.69   | $(3/2)^+$            |                    |                  |                         |                                                                                                                                                                                                              |
| 2186.33 33                            | 0.348 21                 | 3434.78                            | 3/2+                 | 1248.45   | $3/2^{+}$            |                    |                  |                         | Eγ=2186.6 3, Iγ=0.5 1 (2011SaZM).                                                                                                                                                                            |
| 2192.63 <sup>‡</sup> 28               | 0.110 9                  | 6278.89                            | 3/2+                 | 4086.21   | $5/2^{+}$            |                    |                  |                         |                                                                                                                                                                                                              |
| 2233.97 20                            | 53.2 27                  | 2234.06                            | $5/2^{+}$            | 0.0       | $1/2^{+}$            | E2                 |                  | 0.000438 6              | $\alpha(K) = 8.34 \times 10^{-6} \ 12; \ \alpha(L) = 6.43 \times 10^{-7} \ 9;$                                                                                                                               |

Iγ

6

L

|                                        |                          |                        |                      | <sup>51</sup> Cl $\varepsilon$ + $\beta$ | <sup>⊦</sup> decay   | y (190 ms)         | 00 ms) 2018Be12,2011SaZM,2006Ka11 (continued) |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|----------------------------------------|--------------------------|------------------------|----------------------|------------------------------------------|----------------------|--------------------|-----------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                        |                          |                        |                      |                                          |                      |                    | $\gamma(^{31}S)$ (co                          | ntinued)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ${\rm E_{\gamma}}^{\dagger}$           | $I_{\gamma}^{\dagger b}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$                                    | $\mathbf{J}_f^{\pi}$ | Mult. <sup>a</sup> | $\delta^{a}$                                  | ac          | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                        |                          |                        |                      |                                          |                      |                    |                                               |             | $\alpha(M)=5.42\times10^{-8} 8$<br>$\alpha(IPF)=0.000429 6$<br>E $\gamma=2234.2 2$ , I $\gamma=100 1$ (2011SaZM).<br>E $\gamma=2234.5 8$ , I $\gamma=100 12$ (2006Ka11). $\gamma$ also seen in<br>1998Ax02.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| $2483.60^{\ddagger} 22$                | 0.472 26                 | 4717.79                | $(5/2)^+$            | 2234.06                                  | $5/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2605.9 <sup>‡</sup> 5                  | 0.029 5                  | 5890.1                 | $(3/2)^+$            | 3283.76                                  | $5/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2779.5 <sup>‡</sup> 6                  | 0.0253 18                | 6129.1                 | $(5/2^+)$            | 3349.40                                  | $7/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2787.7 <sup>‡</sup> 8                  | 0.0173 39                | 5022.07                | $5/2^{+}$            | 2234.06                                  | $5/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2837.60 <sup>‡</sup> <i>32</i>         | 0.614 <i>34</i>          | 4086.21                | 5/2+                 | 1248.45                                  | 3/2+                 | (M1)               |                                               | 0.000602 8  | $\alpha(K)=5.29\times10^{-6}$ 7; $\alpha(L)=4.07\times10^{-7}$ 6; $\alpha(M)=3.44\times10^{-8}$ 5 $\alpha(IPF)=0.000597$ 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2843.9 <sup>‡</sup> 4                  | 0.084 7                  | 6278.89                | $3/2^{+}$            | 3434.78                                  | $3/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2959.09 <i>31</i>                      | 1.77 9                   | 4207.69                | (3/2)+               | 1248.45                                  | 3/2+                 | (M1)               |                                               | 0.000651 9  | $\alpha(K)=4.97\times10^{-6}$ 7; $\alpha(L)=3.82\times10^{-7}$ 5; $\alpha(M)=3.23\times10^{-8}$ 5<br>$\alpha(IPF)=0.000646$ 9<br>$E\gamma=2960.1$ 2, $I\gamma=2.6$ 2 (2011SaZM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 2970.9 <sup>‡</sup> 4                  | 0.058 6                  | 6254.8                 | $1/2^{+}$            | 3283.76                                  | $5/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2995.04 <i>31</i><br>3076.24 <i>20</i> | 1.15 6<br>2.82 <i>14</i> | 6278.89<br>3076.44     | $3/2^+$<br>$1/2^+$   | 3283.76<br>0.0                           | $5/2^+$<br>$1/2^+$   |                    |                                               |             | E $\gamma$ =2995.6 <i>3</i> , I $\gamma$ =1.9 <i>1</i> (2011SaZM).<br>E $\gamma$ =3077.1 2, I $\gamma$ =3.5 2 (2011SaZM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 3106.28 <sup>‡</sup> <i>31</i>         | 0.734 39                 | 6390.23                | $3/2^{+}$            | 3283.76                                  | $5/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 3202.2 <sup>‡</sup> 4                  | 0.081 7                  | 6278.89                | $3/2^{+}$            | 3076.44                                  | $1/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 3283.57 31                             | 1.11 6                   | 3283.76                | 5/2+                 | 0.0                                      | 1/2+                 | (E2)               |                                               | 0.000908 13 | $\alpha$ (K)=4.45×10 <sup>-6</sup> 6; $\alpha$ (L)=3.43×10 <sup>-7</sup> 5; $\alpha$ (M)=2.89×10 <sup>-8</sup> 4<br>$\alpha$ (IPF)=0.000903 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| $2212.5(^{\ddagger})$                  | 0 401 22                 | (200.22                | 2/2+                 | 2076 44                                  | 1/0+                 |                    |                                               |             | $E\gamma = 5284.0 \ 5, \ I\gamma = 1.7 \ 2 \ (2011SaZiVI).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 3434.70 <i>3</i> 2                     | 0.401 22 0.420 24        | 6390.23<br>3434.78     | 3/2+<br>3/2+         | 0.0                                      | $1/2^+$<br>$1/2^+$   | (M1+E2)            | -0.6 2                                        | 0.000870 21 | $\alpha(K)=4.03\times10^{-6} 6$ ; $\alpha(L)=3.10\times10^{-7} 5$ ; $\alpha(M)=2.62\times10^{-8} 4$<br>$\alpha(IPF)=0.000866 21$<br>$E\gamma=3436.1 7$ , $I\gamma=0.8 1$ (2011SaZM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 3469.13 <sup>‡</sup> <i>31</i>         | 0.113 8                  | 4717.79                | $(5/2)^+$            | 1248.45                                  | $3/2^{+}$            |                    |                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 3541.10 27                             | 0.254 21                 | 5775.4                 | (5/2)+               | 2234.06                                  | 5/2+                 |                    |                                               |             | $E_{\gamma}$ =3540 3, $I_{\gamma}$ ≈2.9 (2011SaZM).<br>$E_{\gamma}$ : 2006Ka11 give 3536 2 with $I_{\gamma}$ =26 8 and tentative<br>placement. In 2011SaZM, a γ peak at 3534.7 2 with $I_{\gamma}$ =5.7<br>2 matches closely with the first escape peak of 4046.2 2 γ<br>line. Gate on 2234γ shows a 3540 3 peak in 2011SaZM<br>which gives a level at 5774 3. In an e-mail reply of Oct 31,<br>2012 from A. Saastamoinen, spectral figure with TAC gate<br>shows 3535 and 3540 resolved with about equal intensities.<br>$I_{\gamma}$ : approximately half the total intensity of 5.7 in 2011SaZM<br>assigned based on spectral figure mentioned above. Intensity |  |

7

 $^{31}_{16}\mathrm{S}_{15}$ -7

|                                | $^{31}$ Cl $\varepsilon$ + $\beta^+$ decay (190 |                        |                              |         |                        |                     | 12,2011SaZM,2           | 2006Ka11 (continued)                                                                                                                                                                                                  |
|--------------------------------|-------------------------------------------------|------------------------|------------------------------|---------|------------------------|---------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                 |                        |                              |         |                        | $\gamma(^{31}S)$ (c | ontinued)               |                                                                                                                                                                                                                       |
| $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{\dagger b}$                        | E <sub>i</sub> (level) | $J_i^\pi$                    | $E_f$   | $\mathbf{J}_f^{\pi}$   | Mult. <sup>a</sup>  | $\alpha^{c}$            | Comments                                                                                                                                                                                                              |
|                                |                                                 |                        |                              |         |                        |                     |                         | of 26 8 in 2006Ka11 probably has a dominant component of                                                                                                                                                              |
|                                |                                                 |                        |                              |         | - (- I                 |                     |                         | single escape of 4046 $\gamma$ line.                                                                                                                                                                                  |
| 3617.40 <sup>+</sup> <i>31</i> | 1.01 6                                          | 4866.03                | $(1/2)^+$                    | 1248.45 | 3/2+                   |                     |                         |                                                                                                                                                                                                                       |
| 3656.01+ 37                    | 0.170 12                                        | 5890.1                 | $(3/2)^+$                    | 2234.06 | 5/2+                   |                     |                         |                                                                                                                                                                                                                       |
| 3773.2+ 5                      | 0.078 7                                         | 5022.07                | 5/2+                         | 1248.45 | $3/2^{+}$              |                     |                         |                                                                                                                                                                                                                       |
| 3907.3 4                       | 0.091 8                                         | 5156.1                 | $1/2^{+}$                    | 1248.45 | $3/2^{+}$              |                     |                         |                                                                                                                                                                                                                       |
| 4020.2 <sup>‡</sup> 5          | 0.055 6                                         | 6254.8                 | 1/2+                         | 2234.06 | 5/2+                   |                     |                         |                                                                                                                                                                                                                       |
| 4044.7 30                      | 11.3 6                                          | 6278.89                | 3/2+                         | 2234.06 | 5/2+                   |                     |                         | $E\gamma$ =4046.2 2, $I\gamma$ =16.0 4 (2011SaZM).<br>$E\gamma$ =4045 2, $I\gamma$ =14 6 (2006Ka11).                                                                                                                  |
| 4085.2 <sup>‡</sup> 8          | 0.019 8                                         | 4086.21                | 5/2+                         | 0.0     | $1/2^{+}$              | [E2]                | 1.20×10 <sup>-3</sup> 2 | $\alpha(K)=3.22\times10^{-6}$ 5; $\alpha(L)=2.475\times10^{-7}$ 35; $\alpha(M)=2.088\times10^{-8}$ 29 $\alpha(IPF)=0.001199$ 17                                                                                       |
| 4155.84 <sup>‡</sup> <i>31</i> | 1.51 9                                          | 6390.23                | 3/2+                         | 2234.06 | $5/2^{+}$              |                     |                         |                                                                                                                                                                                                                       |
| 4187.4 <sup>‡</sup> <i>15</i>  | 0.0034 7                                        | 5436.0                 | $(3/2^+)$                    | 1248.45 | $3/2^{+}$              |                     |                         |                                                                                                                                                                                                                       |
| 4207.43 31                     | 3.12 18                                         | 4207.69                | $(3/2)^+$                    | 0.0     | $1/2^{+}$              |                     |                         | Eγ=4208.9 <i>3</i> , Iγ=4.2 <i>2</i> (2011SaZM).                                                                                                                                                                      |
| 4519.28 32                     | 1.20 7                                          | 4519.71                | $3/2^+$                      | 0.0     | $1/2^+$                |                     |                         | $E_{\gamma}=4520.1$ 3, $I_{\gamma}=1.3$ 1 (2011S aZM).                                                                                                                                                                |
| 4/1/.34 32                     | 0.618 37<br>0.71 $4$                            | 4/1/./9                | $(3/2)^+$<br>$(1/2)^+$       | 0.0     | $\frac{1}{2^+}$        |                     |                         | $E\gamma = 4/19.8 4$ , $I\gamma = 0.9 I (2011SaZM)$ .<br>$E_{2} = -4867 1 4 I_{2} = -1 I (2011SaZM)$                                                                                                                  |
| 4070.2 0                       | 0.71 7                                          | 4070.6                 | (1/2)<br>$(2/2)^{-}$         | 0.0     | 1/2                    |                     |                         | $L_{y} = +607.1 + + + + + + + + + + + + + + + + + + +$                                                                                                                                                                |
| 5030.1 6                       | 1.94 18                                         | 6278.89                | (3/2)<br>$3/2^+$             | 1248.45 | $3/2^+$                |                     |                         | $E_{\gamma}=5031.5$ 3. $I_{\gamma}=2.4$ 2 (2011SaZM).                                                                                                                                                                 |
| 5141 3 6                       | 0 368 36                                        | 6390 23                | 3/2+                         | 1248 45 | 3/2+                   |                     |                         |                                                                                                                                                                                                                       |
| 5155.7 6                       | 0.84 8                                          | 5156.1                 | $1/2^+$                      | 0.0     | $1/2^+$                |                     |                         | $E\gamma=5157.0 \ 3, I\gamma=1.2 \ 1$ (from Table 5.8 in 2011SaZM); 5157 4 in author's table 5.10 seems a misprint                                                                                                    |
| x5407 7 <sup>#</sup> 9         | 0.01# 1                                         |                        |                              |         |                        |                     |                         | in autor 5 able 5.16 seems a misprint.                                                                                                                                                                                |
| 5/35 / \$ 0                    | 0.020.7                                         | 5436.0                 | $(3/2^{+})$                  | 0.0     | 1/2+                   |                     |                         |                                                                                                                                                                                                                       |
| x5785 6 <sup>@</sup> 8         | 0.0207                                          | 5450.0                 | (3/2)                        | 0.0     | 1/2                    |                     |                         |                                                                                                                                                                                                                       |
| 5880.7 <sup>±</sup> 8          | 0.5 1                                           | 5800 1                 | $(2/2)^+$                    | 0.0     | 1/2+                   |                     |                         |                                                                                                                                                                                                                       |
| 5000 0 0 0                     | 0.070 9                                         | 7140.0                 | (3/2)<br>$5/2^+ 2/2^+ 1/2^+$ | 1249.45 | 1/2<br>2/2+            |                     |                         |                                                                                                                                                                                                                       |
| $5900.8^{+} 0$                 | 0.039 /                                         | /149.9                 | 3/2, $3/2$ , $1/2$           | 1246.43 | 5/2<br>1/2+            |                     |                         |                                                                                                                                                                                                                       |
| 6128.7* 10<br>6254 3 6         | $\leq 0.0012$                                   | 6129.1<br>6254.8       | $(5/2^{+})$<br>$1/2^{+}$     | 0.0     | $1/2^{+}$<br>$1/2^{+}$ |                     |                         | $F_{0}=6254.6.5$ $I_{0}=0.7.1$ (2011S <sub>2</sub> 7M)                                                                                                                                                                |
| 6278.4 6                       | 3.15 30                                         | 6278.89                | $3/2^+$                      | 0.0     | $1/2^+$                |                     |                         | $E_{\gamma}=6279.5$ 3. $I_{\gamma}=0.77$ (2011SaZM).                                                                                                                                                                  |
| 6389.5 7                       | 0.181 18                                        | 6390.23                | 3/2+                         | 0.0     | 1/2+                   |                     |                         | $E_{\gamma}$ =6389.7 <i>11</i> , $E_{\gamma}$ =0.24 7 (2011SaZM).<br>I <sub>γ</sub> : according to e-mail reply of Oct 31, 2012 from the author of 2011SaZM, part of the intensity was from double escape of 7415.8γ. |
| $x6420.0^{\#} 6$               | 0.15 <sup>#</sup> 9                             |                        |                              |         |                        |                     |                         |                                                                                                                                                                                                                       |
| 7049.2 <sup>‡</sup> 8          | 0.047 5                                         | 7050.1                 | $(1/2^+, 3/2^+, 5/2^+)$      | 0.0     | $1/2^{+}$              |                     |                         |                                                                                                                                                                                                                       |

 ${}^{31}_{16}{
m S}_{15}$ -8

I

## $\gamma(^{31}S)$ (continued)

| $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\dagger b}$ | $E_i$ (level) |
|-------------------------------------|--------------------------|---------------|
| <sup>x</sup> 7279.1 <sup>#</sup> 10 | 0.24 <sup>#</sup> 7      |               |
| <sup>x</sup> 7415.8 <sup>#</sup> 10 | 0.15 <sup>#</sup> 6      |               |
| <sup>x</sup> 7630.8 <sup>@</sup> 7  | 0.15 <sup>@</sup> 5      |               |
| <sup>x</sup> 7643.5 <sup>@</sup> 8  | $0.09^{@}5$              |               |

<sup>†</sup> From 2018Be12, unless otherwise stated. Intensities from 2011SaZM listed under comments are on a different scale than in 2018Be12. Values in 2011SaZM can be multiplied by a factor of 0.53 to compare these with values from 2018Be12.

<sup>‡</sup> New  $\gamma$  ray reported by 2018Be12.

<sup>#</sup> Tentative  $\gamma$  from 2011SaZM placed as a ground-state transition; not confirmed by 2018Be12.

<sup>@</sup> From 2011SaZM placed as a ground-state transition; not confirmed by 2018Be12.

& From 2011SaZM, and placed from 3076 level, where the fitting was poor. This  $\gamma$  is not confirmed by 2018Be12; authors fitted energy region and gave I $\gamma \le 0.018 4$  at 90% confidence level.

<sup>*a*</sup> From Adopted Gammas.

<sup>b</sup> Absolute intensity per 100 decays.

<sup>c</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$  ray not placed in level scheme.

 ${}^{31}_{16}S_{15}-9$ 

# <sup>31</sup>Cl ε decay (190 ms) 2018Be12,2011SaZM,2006Ka11

## Decay Scheme

Intensities:  $I_{\gamma}$  per 100 parent decays

| <br>$I_{\gamma} < 2\% \times I_{\gamma}^{max}$  |
|-------------------------------------------------|
| <br>$I_{\gamma} < 10\% \times I_{\gamma}^{max}$ |
| <br>$I_{\gamma} > 10\% \times I_{\gamma}^{max}$ |
|                                                 |

Legend

| $\kappa < 10\% \times I_{\gamma}^{max}$<br>$\kappa > 10\% \times I_{\gamma}^{max}$ |                                                                                                                |                                                     |                                   | 3/2+                          | 0               | 190 ms <i>1</i> |               |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|-------------------------------|-----------------|-----------------|---------------|
| 7                                                                                  |                                                                                                                |                                                     | $\%\varepsilon + \%\beta^+ = 100$ | $Q_{\varepsilon}=12$          | 2008 3          |                 |               |
|                                                                                    |                                                                                                                |                                                     |                                   | <sup>31</sup> <sub>17</sub> C | 1 <sub>14</sub> |                 |               |
|                                                                                    |                                                                                                                |                                                     |                                   |                               |                 |                 |               |
|                                                                                    |                                                                                                                |                                                     | 1.                                |                               | $I\beta^+$      | <u>I</u> E      | Log ft        |
| 1/2+,3/2+,5/2+                                                                     |                                                                                                                |                                                     | 9031                              |                               | 0.004           | 0.00004         | 5.4           |
| $(1/2^+, 3/2^+, 5/2^+)$                                                            |                                                                                                                |                                                     | 8860                              |                               | 0.0025          | 0.000018        | 5.74          |
| $\frac{1/2^+, 3/2^+, 5/2^+}{1/2^+}$                                                |                                                                                                                |                                                     | <u> </u>                          |                               | 0.012           | 0.000070        | 5.19          |
| $\frac{1/2}{1/2^+, 3/2^+, 5/2^+}$                                                  |                                                                                                                |                                                     | 8499                              |                               | 0.011           | 0.000050        | 5.39          |
| 1/2+,3/2+,5/2+                                                                     |                                                                                                                |                                                     | 8270                              |                               | 0.017           | 0.000059        | 5.37          |
| $\frac{1/2^+, 3/2^+, 5/2^+}{1/2^+, 2/2^+, 5/2^+}$                                  |                                                                                                                |                                                     | 8122                              |                               | 0.019           | 0.000057        | 5.43          |
| $\frac{1/2^+,3/2^+,5/2^+}{1/2^+,3/2^+,5/2^+}$                                      |                                                                                                                |                                                     | 8022                              |                               | 0.143           | 0.000384        | 4.62          |
| $\frac{112}{(1/2^+, 3/2^+, 5/2^+)}$                                                |                                                                                                                |                                                     | 7778                              |                               | 0.084           | 0.00020         | 4.93          |
| 1/2+,3/2+,5/2+                                                                     |                                                                                                                |                                                     | 7701                              |                               | 0.27            | 0.00053         | 4.54          |
|                                                                                    |                                                                                                                |                                                     | <pre>&gt;7521 ///</pre>           |                               | 0.02            | 0.00003         | 5.8           |
| $\frac{1/2^+, 3/2^+, 5/2^+}{3/2^+, 5/2^+}$                                         |                                                                                                                |                                                     | 7355                              |                               | 0.035           | 0.000051        | 5.62          |
| $\frac{312}{5/2^+,3/2^+,1/2^+}$                                                    |                                                                                                                |                                                     | 7149.9                            |                               | 1.31            | 0.00164         | 4.16          |
| (1/2 <sup>+</sup> ,3/2 <sup>+</sup> ,5/2 <sup>+</sup> )                            |                                                                                                                |                                                     | 7050.1                            |                               | 0.039           | 0.000074        | 5.65          |
|                                                                                    | ~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                        |                                                     | 7037                              |                               | 0.16            | 0.00018         | 5.13          |
|                                                                                    | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 21 (3 (3 ) (3 ) (3 ) (3 ) (3 ) (3 ) (3 )            | 6936                              |                               | 0.27            | 0.00029         | 4.95          |
|                                                                                    | 155<br>131<br>132<br>132<br>132<br>132<br>132<br>132<br>132<br>132<br>132                                      |                                                     |                                   |                               |                 |                 |               |
| $\frac{3/2^+}{3/2^+}$                                                              |                                                                                                                | _&_&_&_&_&_&                                        | 6390.23                           |                               | 3.40            | 0.00248         | 4.10          |
|                                                                                    |                                                                                                                |                                                     | ,                                 |                               |                 |                 |               |
| (2/2)+                                                                             |                                                                                                                |                                                     | 1007.00                           |                               |                 |                 |               |
| $\frac{(3/2)}{5/2^+}$                                                              |                                                                                                                | — <mark>— — — — — — — — — — — — — — — — — — </mark> | 4207.69                           |                               | 4.10            |                 | 4.81          |
| 572                                                                                |                                                                                                                |                                                     |                                   |                               | 0.74            |                 | 5.59          |
|                                                                                    |                                                                                                                |                                                     |                                   |                               |                 |                 |               |
| <u>3/2+</u>                                                                        |                                                                                                                | _ <mark></mark>                                     | 3434.78                           |                               | 0.64            |                 | 5.84          |
| <u>5/2</u>                                                                         | <b> !</b>  _                                                                                                   | ¥                                                   | 3283.76                           |                               | 4.46            |                 | 5.03          |
| <u>1/2</u> <sup>+</sup>                                                            | · · · · · · · · · · · · · · · · · · ·                                                                          |                                                     | 3076.44                           |                               | 2.54            |                 | 5.33          |
|                                                                                    |                                                                                                                |                                                     | ,                                 |                               |                 |                 |               |
|                                                                                    |                                                                                                                |                                                     |                                   |                               |                 |                 |               |
| 5/2+                                                                               | ×                                                                                                              |                                                     | 2234.06                           | 222 fs 55                     | 38              | 0.0041          | 4.37          |
|                                                                                    |                                                                                                                |                                                     |                                   |                               |                 |                 |               |
|                                                                                    |                                                                                                                |                                                     | /                                 |                               |                 |                 |               |
| 2/2+                                                                               |                                                                                                                |                                                     | 1040 45                           | 0.50 - 12                     |                 |                 |               |
| 312                                                                                | <u>+</u>                                                                                                       |                                                     | 1248.45                           | 0.50 ps 12                    | 1.1             |                 | 6.1           |
|                                                                                    |                                                                                                                |                                                     |                                   |                               |                 |                 |               |
|                                                                                    |                                                                                                                |                                                     |                                   |                               |                 |                 |               |
|                                                                                    |                                                                                                                |                                                     | /                                 |                               |                 |                 |               |
| 1/2+                                                                               |                                                                                                                |                                                     | 0.0                               | 2.5534 s 18                   | $\approx 7$     |                 | $\approx 5.6$ |
|                                                                                    | 24                                                                                                             |                                                     |                                   |                               |                 |                 |               |
|                                                                                    | ${}^{31}_{16}S_{15}$                                                                                           |                                                     |                                   |                               |                 |                 |               |

#### <sup>31</sup>Cl ε decay (190 ms) 2018Be12,2011SaZM,2006Ka11



### <sup>31</sup>Cl ε decay (190 ms) 2018Be12,2011SaZM,2006Ka11

#### Decay Scheme (continued)

