24 Mg(12 C, α n γ) **2021Te07**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen and Balraj Singh	NDS 184,29 (2022)	24-Jun-2022			

2021Te07: E(¹²C)=45 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin, (particle) γ -coin $\gamma\gamma(\theta)$ (ADO) using GALILEO array of 25

Compton-suppressed HPGe detectors for γ radiation, EUCLIDES Si-ball for charged particles and Neutron Wall for neutrons at the XTU tandem accelerator facility at Legnaro. Deduced mirror energy differences (MEDs) for ³¹P and ³¹S structures. Comparison with shell-model calculations, and with structure of mirror nucleus ³¹S.

Additional information 1.

31 6	SΙ	Lev	els
------	----	-----	-----

E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	Jπ‡
0.0#	$1/2^{+}$	4452.0 [@] 6	7/2-	6378.7 [@] 9	9/2-	7643.2 15	$(11/2^{-})$
1249.8 [#] 1	3/2+	4584.8 5	7/2+	6393.6 [#] 8	$11/2^{+}$	8463.6 [@] 10	$13/2^{-}$
2235.0 [#] 5	$5/2^{+}$	5302.5 [#] 6	9/2+	6637.1 14	(9/2 ⁻)	9153.7 [#] 11	$13/2^{+}$
3286.3 4	$5/2^{+}$	5674.4 15	$7/2^{+}$	6835.2 [@] 7	$11/2^{-}$	10148 [@] 4	$15/2^{-}$
3352.0 [#] 4	7/2+	5979.0 6	$(9/2^+)$	7301.3 9	$11/2^{+}$		

[†] From a least-squares fit to $E\gamma$ data.

[‡] As proposed by 2021Te07 based on earlier assignments for low-energy levels and their $\gamma(\theta)$ data. Assignments are the same in Adopted Levels, except that some have been given in parentheses there.

[#] Member of yrast sequence based on $1/2^+$.

[@] Member of sequence based on $7/2^-$.

 $\gamma(^{31}S)$

 $R_{ADO}=I\gamma(152^{\circ})/I\gamma(90^{\circ})$. Expected $R_{ADO}\approx 0.64$ for $\Delta J=1$, dipole transitions, and ≈ 1.4 for $\Delta J=2$, quadrupole transitions.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	Comments
907.6 5		7301.3	$11/2^{+}$	6393.6 11/2+		
1006.1 5		7643.2	$(11/2^{-})$	6637.1 (9/2-)		
1051.4 3		3286.3	5/2+	2235.0 5/2+	D+Q	$R_{ADO}=1.08$ 32. Mult.: $\Delta J=0$ transition.
1090.5 7		6393.6	$11/2^{+}$	5302.5 9/2+		
1166.1 5	23 5	4452.0	$7/2^{-}$	3286.3 5/2+	D	R _{ADO} =0.82 2.
1232.8 2		4584.8	$7/2^{+}$	3352.0 7/2+		
1249.8 <i>1</i>	100 12	1249.8	$3/2^{+}$	$0.0 \ 1/2^+$	D+Q	R _{ADO} =0.93 14.
1298.4 <i>3</i>	51	4584.8	$7/2^{+}$	3286.3 5/2+	D+Q	R _{ADO} =1.0 5.
1394.2 4		5979.0	$(9/2^+)$	4584.8 7/2+		
1532.3 5		6835.2	$11/2^{-}$	5302.5 9/2+	D	R _{ADO} =0.81 25.
1629.0 15		8463.6	$13/2^{-}$	6835.2 11/2-		
1852.1 8		9153.7	$13/2^{+}$	7301.3 11/2+		
1926.4 8		6378.7	9/2-	4452.0 7/2-	D+Q	R _{ADO} =1.63 9.
1949.8 <i>5</i>		5302.5	9/2+	3352.0 7/2+	D+Q	R _{ADO} =0.64 15.
2035.9 8	14 <i>1</i>	3286.3	$5/2^{+}$	1249.8 3/2+		
2084.7 6		8463.6	$13/2^{-}$	6378.7 9/2-		
2101.9 5	60 7	3352.0	$7/2^{+}$	1249.8 3/2+	Q	R _{ADO} =1.19 8.
2184.4 20		6637.1	$(9/2^{-})$	4452.0 7/2-		
2235.8 8		2235.0	$5/2^{+}$	$0.0 \ 1/2^+$		
2322.3 14		5674.4	$7/2^{+}$	3352.0 7/2+		
2384.3 8		6835.2	$11/2^{-}$	4452.0 7/2-	Q	R _{ADO} =1.49 <i>36</i> .

Continued on next page (footnotes at end of table)

24 Mg(12 C, α n γ) 2021Te07 (continued)

$\gamma(^{31}S)$ (continued)

Eγ	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	Comments
2761.7 30	9153.7	$13/2^{+}$	6393.6 11/2+		
3042.2 10	6393.6	$11/2^{+}$	3352.0 7/2+	Q	R _{ADO} =1.44 45.
3176 <i>3</i>	9153.7	$13/2^{+}$	5979.0 (9/2+)		
3192 6	7643.2	$(11/2^{-})$	4452.0 7/2-		
3285.3 17	6637.1	$(9/2^{-})$	3352.0 7/2+		
3285.8 14	3286.3	$5/2^{+}$	$0.0 \ 1/2^+$		
3313 4	10148	$15/2^{-}$	6835.2 11/2-		
^x 3612 3					
3743 4	5979.0	$(9/2^+)$	2235.0 5/2+		
^x 3930 <i>3</i>					
3951 <i>3</i>	7301.3	$11/2^{+}$	3352.0 7/2+		

[†] From $\gamma(\theta)$ data. The evaluators assign mult=Q for $\Delta J=2$, quadrupole transitions and D or D+Q for $\Delta J=1$ and in a few cases $\Delta J=0$ transitions. 2021Te07 assign E2 for the former and mostly M1+E2 for the latter, and E1 for pure dipole transitions, while also taking assignments based on mirror symmetry arguments with multipolarity assignments for ³¹P, and from previous literature. ^x γ ray not placed in level scheme.

2

