31	р		
15	I	1	6

	³⁰ Si(p,p):resonar	nces 1976Ou01		
History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022	

1976Ou01: E=1.1-3.0 MeV using high resolution proton beam of the TUNL 3 MV Van de Graaff accelerator with analyzer-homogenizer system. Beam FWHM=350-450 eV. Highly enriched SiO₂ targets (95.55% ³⁰Si). Protons detected using surface barrier detectors at (160°, 135°, 105°, 90°) lab angles. Data taken in steps of 400 eV or less. R-matrix analysis for spins and parities. See also thesis 1975OuZY. Absolute energy calibration based on ⁷Li(p,n) threshold of 1.8806 MeV.

1966Wa07: 3 MeV protons using Utrecht HVEC Van de Graaff generator. Enriched very thin quartz targets (65% 30 Si). Surface barrier detectors for measuring scattered protons. NaI detector for γ -ray detection. Data analyzed by breaking up the scattering into 3 terms: a Rutherford term, a resonance term, and an interference term. Hard sphere scattering ignored. Other paper by the same group: 1967Wa25.

Other (with poor resolution): 1962Va33.

³¹P Levels

E(level) [†]	$J^{\pi \ddagger}$	Г&	Comments
8459.5 3	$(3/2,5/2)^+$	2 eV 1	E(level): E(p)=1202.0 3.
8543.4 <i>3</i>	1/2 ^{-#}	54 eV 10	E(level): $E(p)=1288.8 \ 3.$
8551.7 <i>3</i>	1/2+#	0.31 keV 4	E(level): E(p)=1297.3 3.
8554.7 <i>3</i>	3/2-#	210 eV 25	$E(\text{level}): E(p)=1300.5 \ 3.$
8574.7 <i>3</i>	$(3/2,5/2)^+$	7 eV 5	$E(\text{level}): E(p)=1321.1 \ 3.$
8582.9 <i>3</i>	$1/2^{-1}$	50 eV 10	E(level): E(p)=1329.6 3.
8640.8 <i>3</i>	$(3/2,5/2)^+$	5 eV 3	E(level): $E(p)=1389.4 \ 3.$
8737.5 <i>3</i>	$(3/2)^{+\#}$	20 eV 5	E(level): E(p)=1489.4 3.
8756.9 <i>3</i>	$(3/2, 5/2)^+$	3 eV 2	E(level): E(p)=1509.4 3.
8763.9 <i>3</i>	1/2+#	1.45 keV 15	E(level): $E(p)=1516.7 3$.
8839.2 <i>3</i>	$(5/2,7/2)^{-}$	1 eV 1	E(level): E(p)=1594.5 3.
8902.8 <i>3</i>	1/2+#	90 eV 15	E(level): E(p)=1660.3 3.
8909.7 <i>3</i>	$(3/2,5/2)^+$	1 eV 1	E(level): $E(p)=1667.4 \ 3.$
8936.2 <i>3</i>	$(3/2,5/2)^+$	3 eV 2	E(level): $E(p)=1694.8 \ 3.$
9009.9 <i>3</i>	5/2+ [#]	65 eV 20	E(level): E(p)=1771.0 <i>3</i> .
9047.0 <i>3</i>	3/2 ^{-#}	9.3 keV 9	E(level): E(p)=1809.3 3.
9068.3 <i>3</i>	$(3/2,5/2)^+$	16 eV 5	E(level): E(p)=1831.3 3.
9112.0 <i>3</i>	$(5/2,7/2)^{-}$	1 eV 1	E(level): $E(p)=1876.5 \ 3.$
9114.6 <i>3</i>	$(5/2)^{+\#}$	22 eV 7	E(level): E(p)=1879.2 3.
9126.4 <i>3</i>	$(3/2,5/2)^+$	3 eV 2	E(level): $E(p)=1891.4 \ 3.$
9129.8 <i>3</i>	$(3/2,5/2)^+$ ^(a)	4 eV 2	E(level): E(p)=1894.9 3.
9175.3 <i>3</i>	3/2 ^{-#}	80 eV 15	E(level): E(p)=1941.9 3.
9225.7 <i>3</i>	1/2-#	4.0 keV 4	E(level): E(p)=1994.0 3.
9238.4 <i>3</i>	$(3/2)^+$	150 eV 15	E(level): $E(p)=2007.1 \ 3.$
9253.1 <i>3</i>	$(5/2,7/2)^{-}$	3 eV 1	E(level): $E(p)=2022.3 \ 3.$
9290.5 <i>3</i>	3/2-	9.8 keV 10	E(level): $E(p)=2061.0 \ 3.$
9362.4 <i>3</i>	3/2-	10.0 keV 10	E(level): $E(p)=2135.3 3$.
9399.8 <i>3</i>	1/2+	0.50 keV 8	E(evel): E(p)=2174.0 3.
9412.7 3	$7/2^{-}$	0.50 keV 8	E(evel): E(p)=2187.3 3.
9441.0 3	$(5/2)^+$	180 eV 20	$E(\text{level}): E(p)=2216.5 \ 3.$
9448.6 3	(5/2)'	0.45 keV 5	$E(\text{level}): E(p)=2224.4 \ 3.$
9522.2 3	$\frac{3}{2}$	22.0 KeV 22	E(level): E(p)=2300.5 3. E(level): E(p)=2212.5 2
9333.8 3 0575 0 2	$(3/2,3/2)^{+}$	15 eV 10	E(level): E(p)=2312.3 3. E(level): E(p)=2356.0 3
957863	(3/2,3/2) $3/2^{-}$	22 CV 10 20.0 keV 20	E(1cvc1), E(p)=2350,0,0,3, E(1cvc1), E(p)=2358,8,3
9583 2 3	1/2+	20.0 KeV 20 3.8 keV 4	E(p) = 2363.5.3 E(p) = 2363.5.3
1505.25	-1-	5.0 KC 7 F	L(10,01), L(p) 2000,00,0

Continued on next page (footnotes at end of table)

³⁰Si(p,p):resonances 1976Ou01 (continued)

³¹P Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	г&	Comments
9718.2 <i>3</i>	$(5/2,7/2)^{-}$	30 eV 10	$E(\text{level}): E(p)=2503.1 \ 3.$
9720.6 3	3/2-	24.0 keV 24	$E(\text{level}): E(p)=2505.5 \ 3.$
9755.5 <i>3</i>	$(3/2,5/2)^+$	3 eV 2	E(level): $E(p)=2541.6 \ 3.$
9759.1 <i>3</i>	$(3/2,5/2)^+$	20 eV 7	E(level): $E(p)=2545.3 3$.
9764.9 <i>3</i>	$(3/2)^+$	0.20 keV 5	$E(\text{level}): E(p)=2551.3 \ 3.$
9764.9 <i>3</i>	$(3/2)^{-}$	0.30 keV 7	E(level): $E(p)=2551.3 3$.
9786.4 <i>3</i>	3/2-	50 keV 5	$E(\text{level}): E(p)=2573.6 \ 3.$
9814.4 <i>3</i>	$(5/2,7/2)^{-}$	12 eV 5	$E(\text{level}): E(p)=2602.5 \ 3.$
9816.9 <i>3</i>	3/2-	150 eV 20	$E(\text{level}): E(p)=2605.1 \ 3.$
9819.4 <i>3</i>	$3/2^{-}$	4.5 keV 5	$E(\text{level}): E(p)=2607.7 \ 3.$
9839.2 <i>3</i>	$(7/2)^{-}$	66 eV 15	$E(\text{level}): E(p)=2628.1 \ 3.$
9842.9 <i>3</i>	$(3/2, 5/2)^+$	50 eV 10	$E(\text{level}): E(p)=2632.0 \ 3.$
9868.5 <i>3</i>	3/2-	0.35 keV 4	$E(\text{level}): E(p)=2658.4 \ 3.$
9906.6 <i>3</i>	3/2-	0.35 keV 4	E(level): $E(p)=2697.8 \ 3.$
9928.1 <i>3</i>	5/2+	170 eV 20	E(level): $E(p)=2720.0 \ 3.$
9945.1 <i>3</i>	$(5/2)^{-}$	125 eV 15	E(level): $E(p)=2737.6 \ 3.$
9962.9 <i>3</i>	$1/2^{+}$	5.0 keV 5	$E(\text{level}): E(p)=2756.0 \ 3.$
9998.3 <i>3</i>	$1/2^{+}$	8.0 keV 8	E(level): $E(p)=2792.6 \ 3.$
10019.5 3	$(5/2,7/2)^{-}$	1 eV 1	E(level): $E(p)=2814.5 \ 3.$
10044.8 <i>3</i>	5/2-	0.22 keV 3	E(level): $E(p)=2840.7 \ 3.$
10090.4 3	$(3/2)^+$	90 eV 15	E(level): $E(p)=2887.8 \ 3.$
10091.5 3	$1/2^{+}$	180 eV 20	E(level): $E(p)=2888.9 \ 3.$
10092.9 3	3/2-	0.27 keV 3	E(level): $E(p)=2890.4 \ 3.$
10099.5 <i>3</i>	3/2-	1.00 keV 10	E(level): E(p)=2897.2 3.
10117.3 <i>3</i>	$1/2^{-}$	3.4 keV 3	E(level): $E(p)=2915.6 \ 3.$
10153.2 <i>3</i>	$1/2^{+}$	4.0 keV 4	E(level): $E(p)=2952.7 \ 3.$

[†] Determined from E(p)(cm)+S(p), where $S(p)=7296.553\ 22\ (2021Wa16)$ and E(p)(cm) deduced from listed E(p)(lab) values. 1976Ou01 state that absolute energies are accurate to within ≈ 3 keV, but relative energies over a small proton energy range are reproducible to within ≈ 0.3 keV. To preserve this relative accuracy, the level energies in this dataset show the relative uncertainty of 0.3 keV. Absolute uncertainty in proton and level energies should be 3 keV.

 \pm As proposed by 1976Ou01 from their Hauser-Feshback analysis.

1966Wa07 report the same value.

[@] 1966Wa07 report 5/2⁺.

[&] From Γ_p measured by 1976Ou01; Γ_γ is negligible in most cases, $\Gamma = \Gamma_p$ is assumed.