28 Si(α ,p γ), ⁴He(28 Si,p γ) 1974Tw01, 1979Po01

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen and Balraj Singh	NDS 184, 29 (2022)	24-Jun-2022					

1974Tw01: (α,pγ) E=6.75-14 MeV from Oliver Lodge Laboratory. Enriched Si targets (99.6% ²⁸Si). Ge(Li)-NaI(T1) escape suppressed spectrometer for γ-ray detection. γ-ray polarization measured using a Compton polarimeter consisting of three GeLi detectors. Measured Eγ, Iγ, γγ, γ(θ), γ-p(θ), γ(lin pol), branching ratios and lifetimes using DSAM (line-shape analysis). Deduced levels, J, π, lifetimes, γ-ray multipolarities, mixing ratios, transition strengths. Additional 25% uncertainty in lifetime due to lack of full knowledge of the stopping power theory is not included by authors.

1979Po01: $({}^{28}\text{Si},p\gamma) {}^{28}\text{Si}$ beam at E=46.8 MeV from Oxford University tandem Van-de-Graaff accelerator. Target was ⁴He-implanted nickel foil. Si detector for light ion products and GeLi detector for γ ray detection. Measured E(p), γ p-coin, direct γ -line shape for lifetimes using DSAM (line-shape analysis). Uncertainty in lifetime arises from 5% and 12% uncertainties in the electronic and nuclear stopping powers, respectively.

Others:

1982Ho06: $(\alpha, p\gamma)$ E=7.8-8.5 MeV from Utrecht tandem Van de Graaff accelerator. IMPAC technique for measuring g-factor of levels. NaI detectors for γ -rays and Si surface barrier detector for protons.

1970Va12: $(\alpha, p\gamma)$ E=7-11 MeV from Utrecht tandem Van de Graaff. Enriched silicon oxide targets. Ge detectors for E γ . Si detector for protons. DSAM (line-shape analysis) for lifetime measurements p- γ coin. The total 20% systematic uncertainty includes 8% uncertainty from experimental electronic stopping power data and 15% uncertainty in slowing-down theory where no experimental data exist.

1979Fo02: (²⁸Si,pγ) E=55 MeV ²⁸Si beam at Chalk River. Measured lifetimes using DSAM (line-shape analysis) with Ge(Li) detectors. Estimated 5% uncertainty due to experimental electric stopping power data is included.

1969Cu01: $(\alpha, p\gamma)$ E=9.5 MeV α beam from the Harwell 5-MV Van de Graaff at AERE. Measured lifetimes using DSAM (line-shape analysis) with a NaI(Tl) and a Ge(Li) detector.

All data are from 1974Tw01, unless otherwise stated.

³¹P Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	Comments
0.0	1/2+#		
1266.1 4	3/2+#	521 fs <i>33</i>	T _{1/2} : weighted average of 527 fs <i>33</i> (1979Po01), 555 fs <i>152</i> (1974Tw01), 451 fs <i>153</i> (1970Va12), 555 fs <i>56</i> (1969Cu01), and 485 fs <i>49</i> (1979Fo02), all by DSAM. g-factor=+0.20 <i>5</i> , from precession angle (1982Ho06).
2233.6 4	5/2+#	256 fs 17	T _{1/2} : weighted average of 236 fs 21 (1974Tw01), 208 fs 79 (1970Va12), 263 fs 21 (1969Cu01), 252 fs 17 (1979Fo02), and 271 fs 18 (1979Po01), all by DSAM. g factor=+1.13 18, from precession angles (1982Ho06).
3133.7 7	1/2 ^{+#}	≤10 fs	
3294.8 5	5/2+ #	81 fs 25	
3414.6 6	7/2+	222 fs 59	
3505.4 7	3/2+ #	≤7 fs	
4190.1 5	5/2+ #	≤10 fs	
4261 <i>1</i>	3/2+ #	≤10 fs	
4430.5 5	7/2 ^{-#}	0.41 ps 11	
4594.2 7	3/2 ^{+#}	16 fs 10	
4633.6 6	7/2+	69 fs 20	
4783.0 6	5/2+ #	≤10 fs	
5010	$(3/2^+)^{\#}$	49 fs 16	J^{π} : spin of doublet estimated to be 3/2 and 3/2 ⁺ ,(1/2) (1974Tw01).
5020	3/2 ^{-#}	≤7 fs	J^{π} : see comment for 5010 level.
5115.2 7	5/2+	10.4 fs 44	
5258 2	$1/2^+$	≤10 fs	
5343.1 6	$9/2^+$	33 fs 11	
5529 I	//2+,(5/2+)	≤ 10 fs	J [*] : proposed by 19/41w01 from $\gamma(\theta)$, with 5/2 being rejected only at the 1%

Continued on next page (footnotes at end of table)

²⁸Si(*α*,**p***γ*), ⁴He(²⁸Si,**p***γ*) **1974Tw01,1979Po01** (continued)

³¹P Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	Comments				
			confidence limit; however, $7/2^+$ is in disagreement with adopted $(5/2)^+$.				
5562 2							
5672							
5773 1							
5892.4 7	$9/2^{+}$	21 fs 8					
5988							
6048 1	$7/2^{+}$	22 fs 12					
6081 <i>I</i>	$9/2^{+}$	22 fs 12					
6398 1	$7/2^{(-)}$	22 fs 12					
6452 1	$11/2^{+}$	22 fs 12					
6500 1	$9/2^{-}$	38 fs 14					
6793 <i>1</i>	9/2-	139 fs 41	J^{π} : (5/2,9/2) from p $\gamma(\theta)$ in 1974Tw01.				
6825 <i>1</i>	$11/2^{-}$	62 fs 26					
6932	$5/2^{+}$	≤28 fs					
7080							
7118 <i>I</i>	$9/2^{+}$	≤17 fs					
7441 <i>1</i>	$11/2^{+}$	≤10 fs					
7466 2							

[†] From 1974Tw01.

[‡] From 1974Tw01 based on measured $p\gamma(\theta)$, $\gamma(lin pol)$, γ -ray multipolarity character deduced based on measured lifetime and RUL where available and adopted assignments for certain levels as indicated, unless otherwise noted.

From the Adopted Levels.

[@] From Doppler-shift attenuation (line-shape analysis) method (DSAM) in 1974Tw01, unless otherwise stated. For values from 1974Tw01, an additional 25% uncertainty due to lack of full knowledge of the stopping theory as stated by authors has been added in quadrature by evaluators.

 $\gamma(^{31}P)$

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	$E_f J_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments
1266.1	3/2+	1266	100	0.0 1/2	+		M1+E2, δ =0.28 2 assumed by (1974Tw01), which is taken from 1968Wo01.
2233.6	$5/2^{+}$	968	< 0.1	1266.1 3/2	+		
		2234	100	0.0 1/2	÷		E2 assumed by 1974Tw01. $A_2=+0.38 4$ and +0.41 6, $A_4=-0.28 5$ and -0.26 7; mult not assigned. $\gamma(\theta)$ data are given for a 2234 γ with both the 5892 and 6081 levels, however these levels do not de-excite via a 2234 γ . The evaluator tentatively assigns these angular distributions here.
3133.7	$1/2^{+}$	3134	100	$0.0 \ 1/2^{-1}$	+		M1 assumed by 1974Tw01.
3294.8	$5/2^{+}$	1061	19 5	2233.6 5/2	+ M1+E2	+0.38 9	$A_2 = +0.61 \ 2, \ A_4 = +0.05 \ 2.$
		2029	81 5	1266.1 3/2	+ M1+E2	+0.37 3	$A_2 = +0.26 I, A_4 = +0.04 2.$
3414.6	7/2+	1181 2149	4 <i>1</i> 96 <i>1</i>	2233.6 5/2 1266.1 3/2	* M1+E2 *	-0.35 7	 A₂=+0.90 5, A₄=+0.05 5. E2 assumed by 1974Tw01. 2149γ shown with 6452, 7118 and 7441 levels, however this γ must belong to this transition. A₂=+0.50 5, +0.51 2, +0.43 3, A₄=-0.17 3, -0.21 2, -0.15 4.
3505.4	$3/2^{+}$	2239	36 4	1266.1 3/2	+		
4190.1	5/2+	3505 1956	64 <i>4</i> 24 <i>3</i>	$\begin{array}{r} 0.0 & 1/2^{-1} \\ 2233.6 & 5/2^{-1} \end{array}$	^r M1+E2 ⁺ M1(+E2)	+0.40 3 +0.09 14	$A_2=+0.27/2, A_4=-0.03/10.$ $A_2=+0.47/7, A_4=+0.18/5.$

Continued on next page (footnotes at end of table)

					•				
γ ⁽³¹ P) (continued)									
E _i (level)	J_i^π	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ^{\dagger}	Comments		
4190.1 4261	5/2 ⁺ 3/2 ⁺	2924 2995	76 <i>4</i> 36 <i>4</i>	$\begin{array}{ccc} 1266.1 & 3/2^+ \\ 1266.1 & 3/2^+ \end{array}$	M1+E2	-0.12 5	A ₂ =-0.64 5, A ₄ =+0.05 6. M1+E2, δ =+0.25 5 assumed by 1974Tw01, taken from (p, γ).		
4430.5	7/2-	4261 1016 1136 2197	64 <i>4</i> 6 2 49 <i>4</i> 45 <i>4</i>	$\begin{array}{r} 0.0 & 1/2^{+} \\ 3414.6 & 7/2^{+} \\ 3294.8 & 5/2^{+} \\ 2233.6 & 5/2^{+} \end{array}$	M1+E2	+0.40 6	$A_2 = +0.23 4$, $A_4 = +0.05 5$. E1 assumed by 1974Tw01. E1 assumed by 1974Tw01. E1 assumed by 1974Tw01.		
4594.2	3/2+	2360 3328	19 <i>3</i> 62 <i>4</i>	2233.6 5/2 ⁺ 1266.1 3/2 ⁺	M1+E2	-0.8 4	$A_2 = +0.41 4$, $A_4 = +0.03 5$ for doubly-placed		
4633.6	7/2+	4594 1219 1339 2400	19 <i>3</i> 39 2 36 <i>3</i> 22 <i>4</i>	$\begin{array}{ccc} 0.0 & 1/2^+ \\ 3414.6 & 7/2^+ \\ 3294.8 & 5/2^+ \\ 2233.6 & 5/2^+ \end{array}$	M1+E2 M1+E2 M1+E2	+0.33 6 +0.38 4 +0.45 6	$A_2 = +0.64 2, A_4 = -0.02 2, POL = +0.69 15.$ $A_2 = +0.42 3, A_4 = +0.09 3, POL = +0.81 10.$ $A_2 = +0.47 4, A_4 = +0.09 5.$		
4783.0	5/2+	3368 1488 2549 3517 4783	$3 I$ $35 4$ $19 3$ ≤ 8 $46 4$	$\begin{array}{c} 1266.1 & 3/2^+ \\ 3294.8 & 5/2^+ \\ 2233.6 & 5/2^+ \\ 1266.1 & 3/2^+ \\ 0.0 & 1/2^+ \end{array}$	M1(+E2)	+0.04 10	E2 assumed by 1974Tw01. A_2 =+0.50 5, A_4 =-0.02 6.		
5010	(3/2 ⁺)	3749 [‡]	25 [‡] 5	1266.1 3/2 ⁺			A_2 =+0.21 4, A_4 =0.00 4 and A_2 =+0.12 6, A_4 =+0.05 7. Mult=E1 estimated by 1974Tw01 but not adopted by evaluator.		
		5015 [‡]	75 [‡] 5	0.0 1/2+			$A_2=-0.31$ 3, $A_4=+0.01$ 4 and $A_2=-0.22$ 17, $A_4=+0.33$ 20. Mult=E1 estimated by 1974Tw01 but not adopted by evaluators.		
5020	3/2-	3749 [‡]	80 [‡] 10	1266.1 3/2+					
5115.2	5/2+	5015+ 1700	20+ 10 13 3	$\begin{array}{ccc} 0.0 & 1/2^+ \\ 3414.6 & 7/2^+ \end{array}$	M1+E2	+1.6 11	$A_2 = -1.01\ 26, A_4 = +0.13\ 33\ at\ 10\ MeV;$ $A_2 = -0.24\ 5, A_4 = +0.06\ 6\ at\ 17\ MeV.$		
		2881	25 4	2233.6 5/2+	M1+E2	+0.65 55	$A_2 = +0.55 6, A_4 = -0.02 7.$ δ: from +0.1<δ<+1.2		
5258	$1/2^{+}$	3849 5258	62 <i>4</i> 100	$\begin{array}{ccc} 1266.1 & 3/2^+ \\ & 0.0 & 1/2^+ \end{array}$	M1+E2 M1	+0.30 6	$A_2 = +0.20 \ 30, \ A_4 = -0.06 \ 4.$ $A_2 = +0.11 \ 4, \ A_4 = +0.01 \ 5.$		
5343.1	9/2+	1928 2048 3109	82 <i>4</i> 8 2 10 2	3414.6 7/2 ⁺ 3294.8 5/2 ⁺ 2233.6 5/2 ⁺	M1(+E2) E2 E2	+0.04 6	$A_2 = -0.42 \ 2, A_4 = +0.07 \ 3.$ $A_2 = -0.24 \ 5, A_4 = +0.06 \ 6.$ $A_2 = +0.47 \ 5, A_4 = -0.29 \ 5.$		
5529	7/2+,(5/2+)	2114 3295	54 6 46 6	$3414.6 7/2^+$ 2233.6 5/2 ⁺	M1+E2 M1+E2	+1.0 5 +0.12 5	$A_2 = +0.53 \ I, A_4 = -0.35 \ I2.$ $A_2 = -0.09 \ 9, A_4 = +0.01 \ I2.$		
5562		3328 5562	100	$\begin{array}{cccc} 2233.6 & 5/2 \\ & 0.0 & 1/2^+ \end{array}$					
5672		1241 2257 3438 4406	<10 50 50	4430.5 7/2 ⁻ 3414.6 7/2 ⁺ 2233.6 5/2 ⁺ 1266.1 3/2 ⁺			 I_γ: if I(4406γ) is negligible. I_γ: if I(4406γ) is negligible. I_γ: if I(4406γ) is negligible. I_γ: intensity was masked by an impurity. 		
5773		1139 1583 2358 3539	10 5 15 5 50 <i>10</i> 25 8	$\begin{array}{r} 4633.6 & 7/2^{+} \\ 4190.1 & 5/2^{+} \\ 3414.6 & 7/2^{+} \\ 2233.6 & 5/2^{+} \end{array}$, , , , , , , , , , , , , , , , , , , ,		
5892.4	9/2+	2477 3658	10 2 90 2	$\begin{array}{c} 2233.6 & 5/2 \\ 3414.6 & 7/2^{+} \\ 2233.6 & 5/2^{+} \end{array}$	M1+E2 E2	+0.23 6	$A_2 = +0.15 \ I2, A_4 = +0.03 \ I4.$ $A_2 = +0.42 \ 3, A_4 = -0.29 \ 3.$		
5988		4722	100	1266.1 3/2+					
6048	7/2+	1414 2633	27 6 51 4	4633.6 7/2 ⁺ 3414.6 7/2 ⁺	M1+E2	-0.4 6	$A_2 = +0.47 \ 9, A_4 = -0.03 \ 12.$ δ : from $+0.2 > \delta > -1.0$.		

²⁸Si(α ,p γ),⁴He(²⁸Si,p γ) 1974Tw01,1979Po01 (continued)

Continued on next page (footnotes at end of table)

				²⁸ Si(α ,p γ	/), ⁴ He(⁴	²⁸ Si,pγ) 1	.974Tw01,1	979Po01 (continued)		
γ ⁽³¹ P) (continued)										
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	Comments		
6048	7/2+	3814	22 4	2233.6	5/2+	M1+E2	+1.2 6	$A_2 = -1.03 \ 17, A_4 = +0.36 \ 20.$ δ : from $+1.7 > \delta > +0.6$.		
6081	9/2+	1447 3847	12 3	4633.6	$7/2^+$	F2		$A_{2} = +0.46.2$ $A_{2} = -0.30.2$		
6208	7/2(-)	1067	100	4420.5	5/2 7/2-	D(+0)	0.02.8	$A_2 = +0.402, A_4 = -0.502.$		
6452	1/2	1100	11 4	4430.3 5242 1	$0/2^+$	D(+Q) M1+E2	-0.03.8	$A_2 = +0.424, A_4 = +0.015.$		
0432	11/2	2027	114 804	24146	9/2 7/0+	$\overline{M1+E2}$	+0.27 3	$A_2 = +0.214, A_4 = +0.044.$		
(500	0/2-	2060	89 4 25 5	5414.0 4420.5	7/2		.122	$A_2 = +0.422$, $A_4 = -0.252$.		
6500	9/2	2069	25 5	4430.5	1/2 7/2+	MI+E2	+1.33	$A_2 = +0.92$ 3, $A_4 = +0.39$ 0.		
(702	0.10-	3085	25.5	3414.6	1/2.		0.00 (
6793	9/2	2362	75.8	4430.5	7/2	MI+E2	+0.29 4	$A_2 = -0.825, A_4 = +0.086.$		
		3378	25.8	3414.6	7/2+	D+Q		$A_2 = -0.32$ 3, $A_4 = +0.02$ 4.		
6825	11/2-	1482	40 10	5343.1	9/2+	E1		$A_2 = -0.53 \ 4, \ A_4 = +0.07 \ 5 \ and \ A_2 = -0.31 \ 10, \ A_4 = +0.01 \ 11; \ POL = +0.52 \ 20.$		
		2394	60 10	4430.5	$7/2^{-}$					
6932	$5/2^{+}$	4698	100	2233.6	$5/2^{+}$	M1+E2	-1.3 3	$A_2 = -0.52$ 2, $A_4 = -0.18$ 2.		
7080		2649	100	4430.5	$7/2^{-}$					
7118	$9/2^{+}$	3703	100	3414.6	$7/2^+$	M1+E2	-0.18 2	$A_2 = -0.67 \ l, \ A_4 = +0.06 \ l.$		
7441	$11/2^{+}$	989	92	6452	$11/2^{+}$	M1(+E2)	+0.3 3	$A_2 = +0.81 8, A_4 = -0.19 9.$		
	,	4026	91 2	3414.6	$7/2^+$	E2		$A_2 = +0.45$ 3, $A_4 = -0.24$ 4.		
7466		966	10.5	6500	$9/2^{-}$			<u> </u>		
		3035	45 10	4430.5	$7/2^{-}$					
		4051	45 10	3414.6	7/2+					

45 10 3414.6 7/2 4051

[†] From $p\gamma(\theta)$ in 1974Tw01, with magnetic or electric nature determined based on RUL and measured lifetime where available. [‡] Multiply placed with undivided intensity.

28 Si(α ,p γ), ⁴He(28 Si,p γ) 1974Tw01, 1979Po01

Level Scheme
Intensities: % photon branching from each level

5

28 Si(α ,p γ), ⁴He(28 Si,p γ) 1974Tw01, 1979Po01

Level Scheme (continued)

Intensities: % photon branching from each level & Multiply placed: undivided intensity given

